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0 Introduction  

0.1 Purpose of this Syllabus 
This syllabus forms the basis for the ISTQB® Certified Tester AI Testing.  The ISTQB® provides this 
syllabus as follows: 

1. To member boards, to translate into their local language and to accredit training providers.  
Member boards may adapt the syllabus to their particular language needs and modify the 
references to adapt to their local publications. 

2. To certification bodies, to derive examination questions in their local language adapted to the 
learning objectives for this syllabus. 

3. To training providers, to produce courseware and determine appropriate teaching methods. 

4. To certification candidates, to prepare for the certification exam (either as part of a training 
course or independently). 

5. To the international software and systems engineering community, to advance the profession 
of software and systems testing, and as a basis for books and articles. 

0.2 The Certified Tester AI Testing  
The Certified Tester AI Testing is aimed at anyone involved in testing AI-based systems and/or AI for 
testing.  This includes people in roles such as testers, test analysts, data analysts, test engineers, test 
consultants, test managers, user acceptance testers and software developers.  This certification is 
also appropriate for anyone who wants a basic understanding of testing AI-based systems and/or AI 
for testing, such as project managers, quality managers, software development managers, business 
analysts, operations team members, IT directors and management consultants.   

The Certified Tester AI Testing Overview [I03] is a separate document which includes the following 
information: 

• Business outcomes for the syllabus 

• Matrix of business outcomes and connection with learning objectives 

• Summary of the syllabus 

• Relationships among the syllabi 

0.3 Examinable Learning Objectives and Cognitive Level of 
Knowledge 

Learning objectives support the business outcomes and are used to create the Certified Tester AI 
Testing exams.   

Candidates may be asked to recognize, remember, or recall a keyword or concept mentioned in any 
of the eleven chapters.  The specific learning objectives levels are shown at the beginning of each 
chapter, and classified as follows: 

• K1: Remember 

• K2: Understand 
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• K3: Apply 

• K4: Analyze 

All terms listed as keywords just below chapter headings shall be remembered (K1), even if not 
explicitly mentioned in the learning objectives. 

0.4 Hands-on Levels of Competency 
The Certified Tester Specialist AI Testing includes hands-on objectives which focus on practical skills 
and competencies.   

The following levels apply to hands-on objectives (as shown): 

• H0: Live demo of an exercise or recorded video. 

• H1: Guided exercise.  The students follow a sequence of steps performed by the trainer. 

• H2: Exercise with hints.  The student is given an exercise with relevant hints so the exercise 
can be solved within the given timeframe, or students take part in a discussion. 

 

Competencies are achieved by performing hands-on exercises, such shown in the following list: 

• Demonstrate underfitting and overfitting (H0). 

• Perform data preparation in support of the creation of an ML model (H2). 

• Identify training and test datasets and create an ML model (H2). 

• Evaluate the created ML model using selected ML functional performance metrics (H2). 

• Experience of the implementation of a perceptron (H1). 

• Use of a tool to show how explainability can be used by testers (H2). 

• Apply pairwise testing to derive and execute test cases for an AI-based system (H2). 

• Apply metamorphic testing to derive and execute test cases for a given scenario (H2). 

• Apply exploratory testing to an AI-based system (H2). 

• Discuss, using examples, those activities in testing where AI is less likely to be used (H2). 

• Implement a simple AI-based defect prediction system (H2). 

0.5 The Certified Tester AI Testing Exam 
The Certified Tester AI Testing exam will be based on this syllabus.  Answers to exam questions may 
require the use of material based on more than one section of this syllabus.  All sections of the 
syllabus are examinable, except for the Introduction and Appendices.  Standards and books are 
included as references, but their content is not examinable, beyond what is summarized in the 
syllabus itself from such standards and books. 

Refer to Certified Tester Specialist AI Testing “Overview” document for further details under section 
“Exam Structure”. 

Entry Requirement Note: The ISTQB® Foundation Level certificate shall be obtained before taking the 
Certified Tester Specialist AI Testing exam. 
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0.6 Accreditation 
An ISTQB® Member Board may accredit training providers whose course material follows this 
syllabus.  Training providers should obtain accreditation guidelines from the Member Board or body 
that performs the accreditation.  An accredited course is recognized as conforming to this syllabus 
and is allowed to have an ISTQB® exam as part of the course. 

The accreditation guidelines for this syllabus follow the general Accreditation Guidelines published by 
the Processes Management and Compliance Working Group. 

0.7 Level of Detail 
The level of detail in this syllabus allows internationally consistent courses and exams.  In order to 
achieve this goal, the syllabus consists of: 

• General instructional objectives describing the intention of the AI Testing Certified Tester. 

• A list of terms that students must be able to recall. 

• Learning and hands-on objectives for each knowledge area, describing the learning outcomes 
to be achieved. 

• A description of the key concepts, including references to sources such as accepted literature 
or standards. 

The syllabus content is not a description of the entire knowledge area for the testing of AI-based 
systems; it reflects the level of detail to be covered in Certified Tester Specialist AI Testing training 
courses.  It focuses on introducing the basic concepts of artificial intelligence (AI) and machine 
learning in particular, and how systems based on these technologies can be tested. 

0.8 How this Syllabus is Organized 
There are eleven chapters with examinable content.  The top-level heading for each chapter specifies 
the time for the chapter; timing is not provided below chapter level.  For accredited training courses, 
the syllabus requires a minimum of 25.1 hours of instruction, distributed across the eleven chapters 
as follows:  

• Chapter 1:  105 minutes   Introduction to AI 

• Chapter 2:  105 minutes   Quality Characteristics for AI-Based Systems   

• Chapter 3:  145 minutes   Machine Learning (ML) – Overview 

• Chapter 4:  230 minutes   ML – Data  

• Chapter 5:  120 minutes   ML Functional Performance Metrics 

• Chapter 6:    65 minutes ML – Neural Networks and Testing 

• Chapter 7:  115 minutes   Testing AI-Based Systems Overview 

• Chapter 8:  150 minutes   Testing AI-Specific Quality Characteristics 

• Chapter 9:  245 minutes   Methods and Techniques for the Testing of AI-Based Systems 

• Chapter 10:    30 minutes   Test Environments for AI-Based Systems 

• Chapter 11:  195 minutes   Using AI for Testing 
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1 Introduction to AI – 105 minutes 
Testing Keywords 

None 

AI-Specific Keywords 

AI as a Service (AIaaS), AI development framework, AI effect, AI-based system, artificial intelligence 
(AI), neural network, deep learning (DL), deep neural network, general AI, General Data Protection 
Regulation (GDPR), machine learning (ML), narrow AI, pre-trained model, super AI, technological 
singularity, transfer learning 

Learning Objectives for Chapter 1: 

1.1 Definition of AI and AI Effect 

AI-1.1.1 K2 Describe the AI effect and how it influences the definition of AI. 

1.2 Narrow, General and Super AI 

AI-1.2.1 K2 Distinguish between narrow AI, general AI, and super AI. 

1.3 AI-Based and Conventional Systems. 

AI-1.3.1 K2 Differentiate between AI-based systems and conventional systems. 

1.4 AI Technologies 

AI-1.4.1 K1 Recognize the different technologies used to implement AI. 

1.5 AI Development Frameworks 

AI-1.5.1 K1 Identify popular AI development frameworks. 

1.6 Hardware for AI-Based Systems 

AI-1.6.1 K2 Compare the choices available for hardware to implement AI-based systems. 

1.7 AI as a Service (AIaaS) 

AI-1.7.1 K2 Explain the concept of AI as a Service (AIaaS). 

1.8 Pre-Trained Models 

AI-1.8.1 K2 Explain the use of pre-trained AI models and the risks associated with them. 

1.9 Standards, Regulations and AI 

AI-1.9.1 K2 Describe how standards apply to AI-based systems. 
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1.1 Definition of AI and AI Effect 
The term artificial intelligence (AI) dates back to the 1950s and refers to the objective of building and 
programming “intelligent” machines capable of imitating human beings.  The definition today has 
evolved significantly, and the following definition captures the concept [S01]: 

The capability of an engineered system to acquire, process and apply knowledge and skills.  

The way in which people understand the meaning of AI depends on their current perception.  In the 
1970s the idea of a computer system that could beat a human at chess was somewhere in the future 
and most considered this to be AI.  Now, over twenty years after the computer-based system Deep 
Blue beat world chess champion Garry Kasparov, the “brute force” approach implemented in that 
system is not considered by many to be true artificial intelligence (i.e., the system did not learn from 
data and was not capable of self-learning).  Similarly, the expert systems of the 1970s and 1980s 
incorporated human expertise as rules which could be run repeatedly without the expert being 
present. These were considered to be AI then, but are not considered as such now.   

The changing perception of what constitutes AI is known as the “AI Effect” [R01].  As the perception of 
AI in society changes, so does its definition. As a result, any definition made today is likely to change 
in the future and may not match those from the past. 

1.2 Narrow, General and Super AI 
At a high level, AI can be broken into three categories: 

• Narrow AI (also known as weak AI) systems are programmed to carry out a specific task with 
limited context.  Currently this form of AI is widely available.  For example, game-playing 
systems, spam filters, test case generators and voice assistants. 

• General AI (also known as strong AI) systems have general (wide-ranging) cognitive abilities 
similar to humans.  These AI-based systems can reason and understand their environment as 
humans do, and act accordingly.  As of 2021, no general AI systems have been realized. 

• Super AI systems are capable of replicating human cognition (general AI) and make use of 
massive processing power, practically unlimited memory and access to all human knowledge 
(e.g., through access to the web). It is thought that super AI systems will quickly become 
wiser than humans. The point at which AI-based systems transition from general AI to super 
AI is commonly known as the technological singularity [B01]. 

1.3 AI-Based and Conventional Systems 
In a typical conventional computer system, the software is programmed by humans using an 
imperative language, which includes constructs such as if-then-else and loops.  It is relatively easy for 
humans to understand how the system transforms inputs into outputs.  In an AI-based system using 
machine learning (ML), patterns in data are used by the system to determine how it should react in 
the future to new data (see Chapter 3 for a detailed explanation of ML).  For example, an AI-based 
image processor designed to identify images of cats is trained with a set of images known to contain 
cats.  The AI determines on its own what patterns or features in the data can be used to identify cats.  
These patterns and rules are then applied to new images in order to determine if they contain cats.  In 
many AI-based systems, this results in the prediction-making procedure being less easy to 
understand by humans (see Section 2.7). 
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In practice, AI-based systems can be implemented by a variety of technologies (see Section 1.4), and 
the “AI Effect” (see Section 1.1) may determine what is currently considered to be an AI-based 
system and what is considered to be a conventional system. 

1.4 AI Technologies 
AI can be implemented using a wide range of technologies (see [B02] for more details), such as: 

• Fuzzy logic 

• Search algorithms  

• Reasoning techniques 

- Rule engines 

- Deductive classifiers  

- Case-based reasoning 

- Procedural reasoning  

• Machine learning techniques 

- Neural networks 

- Bayesian models 

- Decision trees 

- Random forest 

- Linear regression 

- Logistic regression 

- Clustering algorithms 

- Genetic algorithms 

- Support vector machine (SVM) 

AI-based systems typically implement one or more of these technologies. 

1.5 AI Development Frameworks 
There are many AI development frameworks available, some of which are focused on specific 
domains. These frameworks support a range of activities, such as data preparation, algorithm 
selection, and compilation of models to run on various processors, such as central processing units 
(CPUs), graphical processing units (GPUs) or Cloud Tensor Processing Units (TPUs). The selection 
of a particular framework may also depend on particular aspects such as the programming language 
used for the implementation and its ease of use.  The following frameworks are some of the most 
popular (as of April 2021): 

• Apache MxNet: A deep learning open-source framework used by Amazon for Amazon Web 
Services (AWS) [R02]. 

• CNTK: The Microsoft Cognitive Toolkit (CNTK) is an open-source deep-learning toolkit [R03]. 

• IBM Watson Studio: A suite of tools that support the development of AI solutions [R04].  
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• Keras: A high-level open-source API, written in the Python language, capable of running on 
top of TensorFlow and CNTK [R06]. 

• PyTorch: An open-source ML library operated by Facebook and used for apps applying 
image processing and natural language processing (NLP).  Support is provided for both 
Python and C++ interfaces [R07].   

• Scikit-learn: An open-source machine ML library for the Python programming language [R08].  

• TensorFlow: An open-source ML framework based on data flow graphs for scalable machine 
learning, provided by Google [R05].  

Note that these development frameworks are constantly evolving, sometimes combining, and 
sometimes being replaced by new frameworks. 

1.6 Hardware for AI-Based Systems 
A variety of hardware is used for ML model training (see Chapter 3) and model implementation.  For 
example, a model that performs speech recognition may run on a low-end smartphone, although 
access to the power of cloud computing may be needed to train it.  A common approach used when 
the host device is not connected to the internet is to train the model in the cloud and then deploy it to 
the host device. 

ML typically benefits from hardware that supports the following attributes: 

• Low-precision arithmetic: This uses fewer bits for computation (e.g., 8 instead of 32 bits, 
which is usually all that is needed for ML). 

• The ability to work with large data structures (e.g., to support matrix multiplication). 

• Massively parallel (concurrent) processing.   

General-purpose CPUs provide support for complex operations that are not typically required for ML 
applications and only provide a few cores.  As a result, their architecture is less efficient for training 
and running ML models when compared to GPUs, which have thousands of cores and which are 
designed to perform the massively parallel but relatively simple processing of images.  As a 
consequence, GPUs typically outperform CPUs for ML applications, even though CPUs typically have 
faster clock speeds.  For small-scale ML work, GPUs generally offer the best option. 

Some hardware is specially intended for AI, such as purpose-built Application-Specific Integrated 
Circuits (ASICs) and System on a Chip (SoC). These AI-specific solutions have features such as 
multiple cores, special data management and the ability to perform in-memory processing.  They are 
most suitable for edge computing, while the training of the ML model is done in the cloud. 

Hardware with specific AI architectures is currently (as of April 2021) under development. This 
includes neuromorphic processors [B03], which do not use the traditional von Neumann architecture, 
but rather an architecture that loosely mimics brain neurons.  

Examples of AI hardware providers and their processors include (as of April 2021): 

• NVIDIA: They provide a range of GPUs and AI-specific processors, such as the Volta [R09]. 

• Google: They have developed application-specific integrated circuits for both training and 
inferencing.  Google TPUs (Cloud Tensor Processing Units) [R10] can be accessed by users 
on the Google Cloud, whereas the Edge TPU [R11] is a purpose-built ASIC designed to run 
AI on individual devices.   
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• Intel: They provide Nervana neural network processors [R12] for deep learning (both training 
and inferencing) and Movidius Myriad vision processing units for inferencing in computer 
vision and neural network applications.   

• Mobileye: They produce the EyeQ family of SoC devices [R13] to support complex and 
computationally intense vision processing. These have low power consumption for use in 
vehicles. 

• Apple: They produce the Bionic chip for on-device AI in iPhones [B04]. 

• Huawei: Their Kirin 970 chip for smartphones has built-in neural network processing for AI 
[B05]. 

1.7 AI as a Service (AIaaS) 
AI components, such as ML models, can be created within an organization, downloaded from a third-
party, or used as a service on the web (AIaaS). A hybrid approach is also possible in which some of 
the AI functionality is provided from within the system and some is provided as a service. 

When ML is used as a service, access is provided to an ML model over the web and support can also 
be provided for data preparation and storage, model training, evaluation, tuning, testing and 
deployment. 

Third-party providers (e.g., AWS, Microsoft) offer specific AI services, such as facial and speech 
recognition. This allows individuals and organizations to implement AI using cloud-based services 
even when they have insufficient resources and expertise to build their own AI services. In addition, 
ML models provided as part of a third-party service are likely to have been trained on a larger, more 
diverse training dataset than is readily available to many stakeholders, such as those who have 
recently moved into the AI market. 

1.7.1 Contracts for AI as a Service 
These AI services are typically provided with similar contracts as for non-AI cloud-based Software as 
a Service (SaaS).  A contract for AIaaS typically includes a service-level agreement (SLA) that 
defines availability and security commitments.  Such SLAs typically cover an uptime for the service 
(e.g., 99.99% uptime) and a response time to fix defects, but rarely define ML functional performance 
metrics, (such as accuracy), in a similar manner (see Chapter 5).  AIaaS is often paid for on a 
subscription basis, and if the contracted availability and/or response times are not met, then the 
service provider typically provides credits for future services.  Other than these credits, most AIaaS 
contracts provide limited liability (other than in terms of fees paid), meaning that AI-based systems 
that depend on AIaaS are typically limited to relatively low-risk applications, where loss of service 
would not be too damaging.   

Services often come with an initial free trial period in lieu of an acceptance period. During this period 
the consumer of the AIaaS is expected to test whether the provided service meets their needs in 
terms of required functionality and performance (e.g., accuracy).  This is generally necessary to cover 
any lack of transparency on the provided service (see Section 7.5). 

1.7.2 AIaaS Examples 
The following are examples of AIaaS (as of April 2021): 

• IBM Watson Assistant: This is an AI chatbot which is priced according to the number of 
monthly active users. 
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• Google Cloud AI and ML Products: These provide document-based AI that includes a form 
parser and document OCR. Prices are based on the number of pages sent for processing. 

• Amazon CodeGuru: This provides a review of ML Java code that supplies developers with 
recommendations for improving their code quality. Prices are based on the number of lines of 
source code analyzed. 

• Microsoft Azure Cognitive Search: The provides AI cloud search. Prices are based on search 
units (defined in terms of the storage and throughput used). 

1.8 Pre-Trained Models 

1.8.1 Introduction to Pre-Trained Models 
It can be expensive to train ML models (see Chapter 3). First, the data has to be prepared and then 
the model must be trained.  The first activity can consume large amounts of human resources, while 
the latter activity can consume a lot of computing resources. Many organizations do not have access 
to these resources. 

A cheaper and often more effective alternative is to use a pre-trained model.  This provides similar 
functionality to the required model and is used as the basis for creating a new model that extends 
and/or focuses the functionality of the pre-trained model. Such models are only available for a limited 
number of technologies, such as neural networks and random forests. 

If an image classifier is needed, it could be trained using the publicly available ImageNet dataset, 
which contains over 14 million images classified into over 1000 categories. This reduces the risk of 
consuming significant resources with no guarantee of success.  Alternatively, an existing model could 
be reused that has already been trained on this dataset. By using such a pre-trained model, training 
costs are saved and the risk of it not working largely eliminated.   

When a pre-trained model is used without modification, it can simply be embedded in the AI-based 
system, or it can be used as a service (see Section 1.7). 

1.8.2 Transfer Learning 
It is also possible to take a pre-trained model and modify it to perform a second, different requirement.  
This is known as transfer learning and is used on deep neural networks in which the early layers (see 
Chapter 6) of the neural network typically perform quite basic tasks (e.g., identifying the difference 
between straight and curved lines in an image classifier), whereas the later layers perform more 
specialized tasks (e.g., differentiating between building architectural types). In this example, all but the 
later layers of an image classifier can be reused, eliminating the need to train the early layers. The 
later layers are then retrained to handle the unique requirements for a new classifier.  In practice, the 
pre-trained model may be fine-tuned with additional training on new problem-specific data. 

The effectiveness of this approach largely depends on the similarity between the function performed 
by the original model and the function required by the new model. For example, modifying an image 
classifier that identifies cat species to then identify dog breeds would be far more effective than 
modifying it to identify people’s accents.   

There are many pre-trained models available, especially from academic researchers.  Some 
examples of such pre-trained models are ImageNet models [R14] such as Inception, VGG, AlexNet, 
and MobileNet for image classification and pre-trained NLP models like Google’s BERT [R15].   
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1.8.3 Risks of using Pre-Trained Models and Transfer Learning 
Using pre-trained models and transfer learning are both common approaches to building AI-based 
systems, but there are some risks associated.  These  include: 

• A pre-trained model may lack transparency compared to an internally generated model. 

• The level of similarity between the function performed by the pre-trained model and the 
required functionality may be insufficient. Also, this difference may not be understood by the 
data scientist. 

• Differences in the data preparation steps (see Section 4.1) used for the pre-trained model 
when originally developed and the data preparation steps used when this model is then used 
in a new system may impact the resulting functional performance.  

• The shortcomings of a pre-trained model are likely to be inherited by those who reuse it and 
may not be documented.  For example, inherited biases (see Section 2.4) may not be 
apparent if there is a lack of documentation about the data used to train the model.  Also, if 
the pre-trained model is not widely used, there are likely to be more unknown (or 
undocumented) defects and more rigorous testing may be needed to mitigate this risk. 

• Models created through transfer learning are highly likely to be sensitive to the same 
vulnerabilities as the pre-trained model on which it is based (e.g., adversarial attacks, as 
explained in 9.1.1). In addition, if an AI-based system is known to contain a specific pre-
trained model (or is based on a specific pre-trained model), then vulnerabilities associated 
with it may already be known by potential attackers. 

Note that several of the above risks can be more easily mitigated by having thorough documentation 
available for the pre-trained model (see Section 7.5). 

1.9 Standards, Regulations and AI 
The Joint Technical Committee of IEC and ISO on information technology (ISO/IEC JTC1) prepares 
international standards which contribute towards AI.  For example, a subcommittee on AI (ISO/IEC 
JTC 1/SC42), was set up in 2017.  In addition, ISO/IEC JTC1/SC7, which covers software and system 
engineering, has published a technical report on the “Testing of AI-based systems” [S01]. 

Standards on AI are also published at the regional level (e.g., European standards) and the national 
level. 

The EU-wide General Data Protection Regulation (GDPR) came into effect in May 2018 and sets 
obligations for data controllers with regards to personal data and automated decision-making [B06].  It 
includes requirements to assess and improve AI system functional performance, including the 
mitigation of potential discrimination, and for ensuring individuals’ rights to not be subjected to 
automated decision-making.  The most important aspect of the GDPR from a testing perspective is 
that personal data (including predictions) should be accurate.  This does not mean that every single 
prediction made by the system must be accurate, but that the system should be accurate enough for 
the purposes for which it is used. 

The German national standards body (DIN) has also developed the AI Quality Metamodel ([S02], 
[S03]). 

Standards on AI are also published by industry bodies.  For example, the Institute of Electrical and 
Electronics Engineers (IEEE) is working on a range of standards on ethics and AI (The IEEE Global 
Initiative for Ethical Considerations in Artificial Intelligence and Autonomous Systems). Many of these 
standards are still in development at the time of writing. 
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Where AI is used in safety-related systems, the relevant regulatory standards are applicable, such as 
ISO 26262 [S04] and ISO/PAS 21448 (SOTIF) [S05] for automotive systems.  Such regulatory 
standards are typically mandated by government bodies, and it would be illegal to sell a car in some 
countries if the included software did not comply with ISO 26262.  Standards in isolation are voluntary 
documents, and their use is normally only made mandatory by legislation or contract.  However, many 
users of standards do so to benefit from the expertise of the authors and to create products that are of 
higher quality. 
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2 Quality Characteristics for AI-Based Systems – 105 
minutes  

Keywords 

None 

AI-Specific Keywords 

Adaptability, algorithmic bias, autonomy, bias, evolution, explainability, explainable AI (XAI), flexibility, 
inappropriate bias, interpretability, ML system, machine learning, reward hacking, robustness, sample 
bias, self-learning system, side effects, transparency 

Learning Objectives for Chapter 2: 

2.1 Flexibility and Adaptability 

AI-2.1.1 K2 Explain the importance of flexibility and adaptability as characteristics of AI-based 
systems. 

2.2 Autonomy 

AI-2.2.1 K2 Explain the relationship between autonomy and AI-based systems. 

2.3 Evolution 

AI-2.3.1 K2 Explain the importance of managing evolution for AI-based systems. 

2.4 Bias 

AI-2.4.1 K2 Describe the different causes and types of bias found in AI-based systems. 

2.5 Ethics 

AI-2.5.1 K2 Discuss the ethical principles that should be respected in the development, 
deployment and use of AI-based systems. 

2.6 Side Effects and Reward Hacking 

AI-2.6.1 K2 Explain the occurrence of side effects and reward hacking in AI-based systems. 

2.7 Transparency, Interpretability and Explainability 

AI-2.7.1 K2 Explain how transparency, interpretability and explainability apply to AI-based 
systems. 

2.8 Safety and AI 

AI-2.8.1 K1 Recall the characteristics that make it difficult to use AI-based systems in safety-
related applications. 
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2.1 Flexibility and Adaptability 
Flexibility and adaptability are closely related quality characteristics.  In this syllabus, flexibility is 
considered to be the ability of the system to be used in situations that were not part of the original 
system requirements, while adaptability is considered to be the ease with which the system can be 
modified for new situations, such as different hardware and changing operational environments. 

Both flexibility and adaptability are useful if: 

• the operational environment is not fully known when the system is deployed. 

• the system is expected to cope with new operational environments. 

• the system is expected to adapt to new situations. 

• the system must determine when it should change its behavior. 

Self-learning AI-based systems are expected to demonstrate all of the above characteristics.  As a 
consequence, they must be adaptable and have the potential to be flexible. 

The flexibility and adaptability requirements of an AI-based system should include details of any 
environment changes to which the system is expected to adapt.  These requirements should also 
specify constraints on the time and resources that the system can use to adapt itself (e.g., how long 
can it take to adapt to recognizing a new type of object). 

2.2 Autonomy 
When defining autonomy, it is important to first recognize that a fully autonomous system would be 
completely independent of human oversight and control. In practice, full autonomy is not often 
desired.  For example, fully self-driving cars, which are popularly referred to as “autonomous”, are 
officially classified as having “full driving automation” [B07]. 

Many consider autonomous systems to be “smart” or “intelligent”, which suggests they would include 
AI-based components to perform certain functions.  For example, autonomous vehicles that need to 
be situationally aware typically use several sensors and image processing to gather information about 
the vehicle’s immediate environment.  Machine learning, and especially deep learning (see Section 
6.1), has been found to be the most effective approach to performing this function.  Autonomous 
systems may also include decision-making and control functions. Both of these can be effectively 
performed using AI-based components.   

Even though some AI-based systems are considered to be autonomous, this does not apply to all AI-
based systems. In this syllabus, autonomy is considered to be the ability of the system to work 
independently of human oversight and control for prolonged periods of time. This can help with 
identifying the characteristics of an autonomous system that need to be specified and tested.  For 
example, the length of time an autonomous system is expected to perform satisfactorily without 
human intervention needs to be known.  In addition, it is important to identify the events for which the 
autonomous system must give control back to its human controllers. 

2.3 Evolution 
In this syllabus, evolution is considered to be the ability of the system to improve itself in response to 
changing external constraints.  Some AI systems can be described as self-learning and successful 
self-learning AI-based systems need to incorporate this form of evolution. 
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AI-based systems often operate in an evolving environment. As with other forms of IT systems, an AI-
based system needs to be flexible and adaptable enough to cope with changes in its operational 
environment. 

Self-learning AI-based systems typically need to manage two forms of change:   

• One form of change is where the system learns from its own decisions and its interactions 
with its environment.  

• The other form of change is where the system learns from changes made to the system’s 
operational environment.  

In both cases the system will ideally evolve to improve its effectiveness and efficiency. However, this 
evolution must be constrained to prevent the system from developing any unwanted characteristics. 
Any evolution must continue to meet the original system requirements and constraints. Where these 
are lacking, the system must be managed to ensure that any evolution remains within limits and that it 
always stays aligned with human values.  Section 2.6 provides examples relating to the impact of side 
effects and reward hacking on self-learning AI-based systems. 

2.4 Bias 
In the context of AI-based systems, bias is a statistical measure of the distance between the outputs 
provided by the system and what are considered to be “fair outputs” which show no favoritism to a 
particular group.  Inappropriate biases can be linked to attributes such as gender, race, ethnicity, 
sexual orientation, income level, and age.  Cases of inappropriate bias in AI-based systems have 
been reported, for example, in systems used for making recommendations for bank lending, in 
recruitment systems, and in judicial monitoring systems. 

Bias can be introduced into many types of AI-based systems. For example, it is difficult to prevent the 
bias of experts being built-in to the rules applied by an expert system. However, the prevalence of ML 
systems means that much of the discussion relating to bias takes place in the context of these 
systems. 

ML systems are used to make decisions and predictions, using algorithms which make use of 
collected data, and these two components can introduce bias in the results: 

• Algorithmic bias can occur when the learning algorithm is incorrectly configured, for example, 
when it overvalues some data compared to others. This source of bias can be caused and 
managed by the hyperparameter tuning of the ML algorithms (see Section 3.2). 

• Sample bias can occur when the training data is not fully representative of the data space to 
which ML is applied. 

Inappropriate bias is often caused by sample bias, but occasionally it can also be caused by 
algorithmic bias. 

2.5 Ethics 
Ethics is defined in the Cambridge Dictionary as: 

a system of accepted beliefs that control behavior, especially such a system based on morals   

AI-based systems with enhanced capabilities are having a largely positive effect on people’s lives. As 
these systems have become more widespread, concerns have been raised as to whether they are 
used in an ethical manner.   
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What is considered ethical can change over time and can also change among localities and cultures.  
Care must be taken that the deployment of an AI-based system from one location to another 
considers differences in stakeholder values. 

National and international policies on the ethics of AI can be found in many countries and regions.  
The Organisation for Economic Co-operation and Development issued its principles for AI, the first 
international standards agreed by governments for the responsible development of AI, in 2019 [B08].  
These principles were adopted by forty-two countries when they were issued and are also backed by 
the European Commission.  They include practical policy recommendations as well as value-based 
principles for the “responsible stewardship of trustworthy AI”. These are summarized as: 

• AI should benefit people and the planet by driving inclusive growth, sustainable development 
and well-being. 

• AI systems should respect the rule of law, human rights, democratic values and diversity, and 
should include appropriate safeguards to ensure a fair society. 

• There should be transparency around AI to ensure that people understand outcomes and can 
challenge them. 

• AI systems must function in a robust, secure and safe way throughout their life cycles and 
risks should be continually assessed. 

• Organizations and individuals developing, deploying or operating AI systems should be held 
accountable. 

2.6 Side Effects and Reward Hacking 
Side effects and reward hacking can result in AI-based systems generating unexpected, and even 
harmful, results when the system attempts to meet its goals [B09]. 

Negative side effects can result when the designer of an AI-based system specifies a goal that 
“focuses on accomplishing some specific tasks in the environment but ignores other aspects of the 
(potentially very large) environment, and thus implicitly expresses indifference over environmental 
variables that might actually be harmful to change” [B09].  For example, a self-driving car with a goal 
of travelling to its destination in “as fuel-efficient and safe manner as possible” may achieve the goal, 
but with the side effect of the passengers becoming extremely annoyed at the excessive time taken. 

Reward hacking can result from an AI-based system achieving a specified goal by using a “clever” or 
“easy” solution that “perverts the spirit of the designer’s intent”.  Effectively, the goal can be gamed.  A 
widely used example of reward hacking is where an AI-based system is teaching itself to play an 
arcade computer game.  It is presented with the goal of achieving the “highest score” , and to do so it 
simply hacks the data record that stores the highest score, rather than playing the game to achieve it. 

2.7 Transparency, Interpretability and Explainability 
AI-based systems are typically applied in areas where users need to trust those systems. This may be 
for safety reasons, but also where privacy is needed and where they might provide potentially life-
changing predictions and decisions. 

Most users are presented with AI-based systems as “black boxes” and have little awareness of how 
these systems arrive at their results. In some cases, this ignorance may even apply to the data 
scientists who built the systems. Occasionally, users may not even be aware they are interacting with 
an AI-based system. 
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The inherent complexity of AI-based systems has led to the field of “Explainable AI” (XAI).  The aim of 
XAI is for users to be able to understand how AI-based systems come up with their results, thus 
increasing users’ trust in them. 

According to The Royal Society [B10], there are several reasons for wanting XAI, including: 

• giving users confidence in the system 

• safeguarding against bias 

• meeting regulatory standards or policy requirements 

• improving system design 

• assessing risk, robustness, and vulnerability 

• understanding and verifying the outputs from a system 

• autonomy, agency (making the user feel empowered), and meeting social values 

This leads to the following three basic desirable XAI characteristics for AI-based systems from the 
perspective of a stakeholder (see also Section 8.6): 

• Transparency: This is considered to be the ease with which the algorithm and training data 
used to generate the model can be determined. 

• Interpretability: This is considered to be the understandability of the AI technology by various 
stakeholders, including the users. 

• Explainability: This is considered to be the ease with which users can determine how the AI-
based system comes up with a particular result. 

2.8 Safety and AI 
In this syllabus, safety is considered to be the expectancy that an AI-based system will not cause 
harm to people, property or the environment.  AI-based systems may be used to make decisions that 
affect safety.  For example, AI-based systems working in the fields of medicine, manufacturing, 
defense, security, and transportation have the potential to affect safety. 

The characteristics of AI-based systems that make it more difficult to ensure they are safe (e.g., do 
not harm humans) include: 

• complexity 

• non-determinism 

• probabilistic nature 

• self-learning 

• lack of transparency, interpretability and explainability 

• lack of robustness 

The challenges of testing several of these characteristics are covered in Chapter 8. 
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3 Machine Learning (ML) – Overview - 145 minutes 
Keywords 

None 

AI-Specific Keywords 

Association, classification, clustering, data preparation, ML algorithm, ML framework, ML functional 
performance criteria, ML model, ML training data, ML workflow, model evaluation, model tuning, 
outlier, overfitting, regression, reinforcement learning, supervised learning, underfitting, unsupervised 
learning 

Learning Objectives for Chapter 3: 

3.1 Forms of ML 

AI-3.1.1 K2 Describe classification and regression as part of supervised learning. 

AI-3.1.2 K2 Describe clustering and association as part of unsupervised learning. 

AI-3.1.3 K2 Describe reinforcement learning. 

3.2 ML Workflow 

AI-3.2.1 K2 Summarize the workflow used to create an ML system. 

3.3 Selecting a Form of ML  

AI-3.3.1 K3 Given a project scenario, identify an appropriate form of ML (from classification, 
regression, clustering, association, or reinforcement learning). 

3.4 Factors involved in ML Algorithm Selection 

AI-3.4.1 K2 Explain the factors involved in the selection of ML algorithms. 

3.5 Overfitting and Underfitting 

AI-3.5.1 K2 Summarize the concepts of underfitting and overfitting. 

HO-3.5.1 H0 Demonstrate underfitting and overfitting. 
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3.1 Forms of ML 
ML algorithms  can be categorized as: 

• supervised learning, 

• unsupervised learning, and 

• reinforcement learning. 

3.1.1 Supervised Learning 
In this kind of learning, the algorithm creates the ML model from labeled data during the training 
phase.  The labeled data, which typically comprises pairs of inputs (e.g., an image of a dog and the 
label “dog”) is used by the algorithm to infer the relationship between the input data (e.g., images of 
dogs) and the output labels (e.g., “dog” and “cat”) during the training.  During the ML model testing 
phase, a new set of unseen data is applied to the trained model to predict the output.  The model is 
deployed once the output accuracy level is satisfactory. 

Problems solved by supervised learning are divided into two categories: 

• Classification: This is when the problem requires an input to be classified into one of a few 
pre-defined classes, classification is used.  Face recognition or object detection in an image 
are examples of problems that use classification.   

• Regression: This is when the problem requires the ML model to predict a numeric output 
using regression.  Predicting the age of a person based on input data about their habits or 
predicting the future prices of stocks are examples of problems that use regression. 

Note that the term regression, as used in the context of a ML problem, is different to its use in other 
ISTQB® syllabi, such as [I01], where regression is used to describe the problem of software 
modifications causing change-related defects. 

3.1.2 Unsupervised Learning 
In this kind of learning, the algorithm creates the ML model from unlabeled data during the training 
phase.  The unlabeled data is used by the algorithm to infer patterns in the input data during the 
training and assigns inputs to different classes, based on their commonalities.  During the testing 
phase, the trained model is applied to a new set of unseen data to predict which classes the input 
data should be assigned to.  The model is deployed once the output accuracy level is considered to 
be satisfactory. 

Problems solved by unsupervised learning are divided into two categories: 

• Clustering: This is when the problem requires the identification of similarities in input data 
points that allows them to be grouped based on common characteristics or attributes. For 
example, clustering is used to categorize different types of customers for the purpose of 
marketing. 

• Association: This is when the problem requires interesting relationships or dependencies to 
be identified among data attributes. For example, a product recommendation system may 
identify associations based on customers’ shopping behavior. 
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3.1.3 Reinforcement Learning 
Reinforcement learning is an approach where the system (an “intelligent agent”) learns by interacting 
with the environment in an iterative manner and thereby learns from experience.  Reinforcement 
learning does not use training data. The agent is rewarded when it makes a correct decision and 
penalized when it makes an incorrect decision.   

Setting up the environment, choosing the right strategy for the agent to meet the desired goal, and 
designing a reward function, are key challenges when implementing reinforcement learning.  
Robotics, autonomous vehicles, and chatbots are examples of applications that use reinforcement 
learning. 

3.2 ML Workflow 
The activities in the machine learning workflow are: 

Understand the Objectives 

The purpose of the ML model to be deployed needs to be understood and agreed with the 
stakeholders to ensure alignment with business priorities.  Acceptance criteria (including ML 
functional performance metrics – see Chapter 5) should be defined for the developed model.   

Select a Framework 

A suitable AI development framework should be selected based on the objectives, 
acceptance criteria, and business priorities (see Section 1.5).   

Select & Build the Algorithm 

An ML algorithm is selected based on various factors including the objectives, acceptance 
criteria, and the available data (see Section 3.4).  The algorithm may be manually coded, but 
it is often retrieved from a library of pre-written code.  The algorithm is then compiled to 
prepare for training the model, if required. 

Prepare & Test Data 

Data preparation (see Section 4.1) comprises data acquisition, data pre-processing and 
feature engineering. Exploratory data analysis (EDA) may be performed alongside these 
activities. 

The data used by the algorithm and model will be based on the objectives and is used by all 
the activities in the “model generation and test” activity shown on Figure 1.  For example, if 
the system is a real-time trading system, the data will come from the trading market.   

The data used to train, tune and test the model must be representative of the operational data 
that will be used by the model.  In some cases, it is possible to use pre-gathered datasets for 
the initial training of the model (e.g., see Kaggle datasets [R16]).  Otherwise, raw data 
typically needs some pre-processing and feature engineering. 

Testing of the data and any automated data preparation steps needs to be performed.  See 
Section 7.2.1 for more details on input data testing. 

Train the Model 

The selected ML algorithm uses training data to train the model. 

Some algorithms, such as those generating a neural network, read the training dataset 
several times.  Each iteration of training on the training dataset is referred to as an epoch. 
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Parameters defining the model structure (e.g., the number of layers of a neural network or the 
depth of a decision tree) are passed to the algorithm.  These parameters are known as model 
hyperparameters. 

Parameters that control the training (e.g., how many epochs to use when training a neural 
network) are also passed to the algorithm.  These parameters are known as algorithm 
hyperparameters. 

Evaluate the Model 

The model is evaluated against the agreed ML functional performance metrics, using the 
validation dataset and the results then used to improve (tune) the model.  Model evaluation 
and tuning should resemble a scientific experiment that needs to be carefully conducted 
under controlled conditions with clear documentation.  In practice, several models are 
typically created and trained using different algorithms (e.g., random forests, SVM, and neural 
networks), and the best one is chosen, based on the results of the evaluation and tuning. 

Tune the Model 

The results from evaluating the model against the agreed ML functional performance metrics 
are used to adjust the model settings to fit the data and thereby improve its performance.  
The model may be tuned by hyperparameter tuning, where the training activity is modified 
(e.g., by changing the number of training steps or by changing the amount of data used for 
training), or attributes of the model are updated (e.g., the number of neurons in a neural 
network or the depth of a decision tree). 

The three activities of training, evaluation and tuning can be considered as comprising model 
generation, as shown on Figure 1. 

Test the Model 

Once a model has been generated, (i.e., it has been trained, evaluated and tuned), it should 
be tested against an independent test dataset set to ensure that the agreed ML functional 
performance criteria are met (see Section 7.2.2).  The functional performance measures from 
testing are also compared with those from evaluation, and if the performance of the model 
with independent data is significantly lower than during evaluation, it may be necessary to 
select a different model. 

In addition to functional performance tests, non-functional tests, such as for the time to train 
the model, and the time and resource usage taken to provide a prediction, also need to be 
performed. Typically, these tests are performed by the data engineer/scientist, but testers 
with sufficient knowledge of the domain and access to the relevant resources can also 
perform these tests. 

Deploy the Model 

Once model development is complete, as shown on Figure 1, the tuned model typically needs 
to be re-engineered for deployment along with its related resources, including the relevant 
data pipeline. This is normally achieved through the framework.  Targets might include 
embedded systems and the cloud, where the model can be accessed via a web API.   
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Figure 1: ML Workflow 

 

Use the Model 

Once deployed, the model is typically part of a larger AI-based system and can be used 
operationally.  Models may perform scheduled batch predictions at set time intervals or may 
run on request in real time. 

Monitor and Tune the Model 

While the model is being used, its situation may evolve and the model may drift away from its 
intended performance (see Sections 2.3 and 7.6).  To ensure that any drift is identified and 
managed, the operational model should be regularly evaluated against its acceptance criteria. 

It may be deemed necessary to update the model settings to address the problem of drift or it 
may be decided that re-training with new data is needed to create a more accurate or more 
robust model. In this case a new model may be created and trained with updated training 
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data.  The new model may then be compared against the existing model using a form of A/B 
testing (see Section 9.4). 

The ML workflow shown in Figure 1 is a logical sequence. In practice, the workflow is applied in a 
manner where the steps are repeated iteratively (e.g., when the model is evaluated, it is often 
necessary to return to the training step, and sometimes to data preparation).   

The steps shown in Figure 1 do not include the integration of the ML model with the non-ML parts of 
the overall system.  Typically, ML models cannot be deployed in isolation and need to be integrated 
with the non-ML parts.  For example, in vision applications, there is a data pipeline that cleans and 
modifies data before submitting it to the ML model.  Where the model is part of a larger AI-based 
system, it will need to be integrated into this system prior to deployment.  In this case, integration, 
system and acceptance test levels may be performed, as described in Section 7.2. 

3.3 Selecting a Form of ML 
When selecting an appropriate ML approach, the following guidelines apply: 

• There should be sufficient training and test data available for the selected ML approach. 

• For supervised learning, it is necessary to have properly labeled data. 

• If there is an output label, it may be supervised learning. 

• If the output is discrete and categorical, it may be classification. 

• If the output is numeric and continuous in nature, it may be regression. 

• If no output is provided in the given dataset, it may be unsupervised learning. 

• If the problem involves grouping similar data, it may be clustering.  

• If the problem involves finding co-occurring data items, it may be association. 

• Reinforcement learning is better suited to contexts in which there is interaction with the 
environment. 

• If the problem involves the notion of multiple states, and involves decisions at each state, 
then reinforcement learning may be applicable. 

3.4 Factors Involved in ML Algorithm Selection 
There is no definitive approach to selecting the optimal ML algorithm, ML model settings and ML 
model hyperparameters. In practice, this set is chosen based on a mix of the following factors: 

• The required functionality (e.g., whether the functionality is classification or prediction of a 
discrete value) 

• The required quality characteristics; such as 

o accuracy (e.g., some models may be more accurate, but be slower) 

o constraints on available memory (e.g., for an embedded system) 

o the speed of training (and retraining) the model 

o the speed of prediction (e.g., for real-time systems) 

o transparency, interpretability and explainability requirements 
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• The type of data available for training the model (e.g., some models might only work with 
image data) 

• The amount of data available for training and testing the model (some models might, for 
example, have a tendency to overfit with a limited amount of data, to a greater degree than 
other models) 

• The number of features in the input data expected to be used by the model (e.g., other 
factors, such as speed and accuracy, are likely to be directly affected by the number of 
features)  

• The expected number of classes for clustering (e.g., some models may be unsuitable for 
problems with more than one class) 

• Previous experience 

• Trial and error 

3.5 Overfitting and Underfitting 

3.5.1 Overfitting 
Overfitting occurs when the model fits too closely to a set of data points and fails to properly 
generalize.  Such a model works very well with the data used to train it but can struggle to provide 
accurate predictions for new data.  Overfitting can occur when the model tries to fit to every data 
point, including those data points that may be described as noise or outliers. It can also occur when 
insufficient data is provided in the training dataset. 

3.5.2 Underfitting 
Underfitting occurs when the model is not sophisticated enough to accurately fit to the patterns in the 
training data.  Underfitting models tend to be too simplistic and can struggle to provide accurate 
predictions for both new data and data very similar to the training data.  One cause of underfitting can 
be a training dataset that does not contain features that reflect important relationships between inputs 
and outputs.  It can also occur when the algorithm does not correctly fit the data (e.g., creating a 
linear model for non-linear data). 

3.5.3 Hands-On Exercise: Demonstrate Overfitting and Underfitting 
Demonstrate the concepts of overfitting and underfitting on a model.  This could be demonstrated by 
using a dataset that contains very little data (overfitting), and a dataset with poor feature correlations 
(underfitting). 



Certified Tester  
AI Testing (CT-AI) 
Syllabus  

 

v1.0 Page 33 of 100 2021-10-01 
© International Software Testing Qualifications Board 

4 ML - Data – 230 minutes 
Keywords 

None 

AI-Specific Keywords 

Annotation, augmentation, classification model, data labelling, data preparation, ML training data, 
supervised learning, test dataset, validation dataset 

Learning Objectives for Chapter 4: 

4.1 Data Preparation as part of the ML Workflow 

AI-4.1.1 K2 Describe the activities and challenges related to data preparation. 

HO-4.1.1 H2 Perform data preparation in support of the creation of an ML model. 

4.2 Training, Validation and Test Datasets in the ML Workflow 

AI-4.2.1 K2 Contrast the use of training, validation and test datasets in the development of an ML 
model. 

HO-4.2.1 H2 Identify training and test datasets and create an ML model. 

4.3 Dataset Quality Issues 

AI-4.3.1 K2 Describe typical dataset quality issues. 

4.4 Data quality and its effect on the ML model 

AI-4.4.1 K2 Recognize how poor data quality can cause problems with the resultant ML model. 

4.5 Data Labelling for Supervised Learning 

AI-4.5.1 K1 Recall the different approaches to the labelling of data in datasets for supervised 
learning. 

AI-4.5.2 K1 Recall reasons for the data in datasets being mislabeled. 
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4.1 Data Preparation as Part of the ML Workflow 
Data preparation uses an average of 43% of the ML workflow effort and is probably the most 
resource-intensive activity in the ML workflow. In comparison, model selection and building uses only 
17% [R17].  Data preparation forms part of the data pipeline, which takes in raw data and outputs 
data in a form that can be used to both train an ML model and for prediction by a trained ML model. 

Data preparation can be considered to comprise the following activities: 

Data acquisition 

• Identification: The types of data to be used for training and predictions are identified.  For 
example, for a self-driving car, it could include the identification of the need for radar, video 
and laser imaging, detection, and ranging (LiDAR) data. 

• Gathering: The source of the data is identified and the means for collecting the data are 
determined.  For example, this could include the identification of the International Monetary 
Fund (IMF) as a source for financial data and the channels that will be used to submit the 
data into the AI-based system.   

• Labelling: See Section 4.5. 

The acquired data can be in various forms (e.g., numerical, categorical, image, tabular, text, time-
series, sensor, geospatial, video, and audio). 

Data pre-processing 

• Cleaning:  Where incorrect data, duplicate data or outliers are identified, they are either 
removed or corrected.  In addition, data imputation may be used to replace missing data 
values with estimated or guessed values (e.g., using mean, median and mode values).  The 
removal or anonymization of personal information may also be performed. 

• Transformation: The format of the given data is changed (e.g., breaking an address held as a 
string into its constituent parts, dropping a field holding a random identifier, converting 
categorical data into numerical data, changing image formats).  Some of the transformations 
applied on numerical data include scaling to ensure that the same range is used. 
Standardization, for example, rescales data to ensure it takes a mean of zero and a standard 
deviation of one. This normalization ensures that the data has a range between zero and one. 

• Augmentation: This is used to increase the number of samples in a dataset. Augmentation 
can also be used to include adversarial examples in the training data, providing robustness 
against adversarial attacks (see 9.1).   

• Sampling: This involves selection of some part of the total available dataset so that patterns 
in the larger dataset can be observed. This is typically done to reduce costs and the time 
needed to create the ML model. 

Note that all pre-processing carries a risk that it may change useful valid data or add invalid data. 

Feature engineering 

• Feature selection: A feature is an attribute/property reflected in the data. Feature selection 
involves the selection of those features which are most likely to contribute to model training 
and prediction.  In practice, it often includes the removal features that are not expected (or 
that are not wanted) to have any effect on the resultant model.  By removing irrelevant 
information (noise), feature selection can reduce overall training times, prevent overfitting 
(see Section 3.5.1), increase accuracy and make models more generalizable. 
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• Feature extraction: This involves the derivation of informative and non-redundant features 
from the existing features. The resulting data set is typically smaller and can be used to 
generate an ML model of equivalent accuracy more cheaply and more quickly. 

In parallel to these data preparation activities, exploratory data analysis (EDA) is also typically carried 
out to support the overall data preparation task.  This includes performing data analysis to discover 
trends inherent in the data and using data visualization to represent data in a visual format by plotting 
trends in the data. 

Although the above data preparation activities and sub-activities have been shown in a logical order, 
different projects may re-order them or only use a subset of them.  Some of the data preparation 
steps, such as the identification of the data source, are performed just once and can be performed 
manually. Other steps may be part of the operational data pipeline and normally work on live data. 
These tasks should be automated. 

4.1.1 Challenges in Data Preparation 
Some of the challenges related to data preparation include: 

• The need for knowledge of: 

o the application domain. 

o the data and its properties. 

o the various techniques associated with data preparation. 

• The difficulty of getting high quality data from multiple sources. 

• The difficulty of automating the data pipeline, and ensuring that the production data pipeline is 
both scalable and has reasonable performance efficiency (e.g., time needed to complete the 
processing of a data item). 

• The costs associated with data preparation. 

• Not giving sufficient priority to checking for defects introduced into the data pipeline during 
data preparation. 

• The introduction of sample bias (see Section 2.4). 

4.1.2 Hands-On Exercise: Data Preparation for ML 
For a given set of raw data, perform the applicable data preparation steps as outlined in Section 4.1 to 
produce a dataset that will be used to create a classification model using supervised learning. 

This activity forms the first step in creating an ML model that will be used for future exercises. 

To perform this activity, students will be provided with appropriate (and language-specific) materials, 
including: 

• Libraries 

• ML frameworks 

• Tools 

• A development environment 
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4.2 Training, Validation and Test Datasets in the ML Workflow 
Logically, three sets of equivalent data (i.e., randomly selected from a single initial dataset) are 
required to develop an ML model: 

• A training dataset, which is used to train the model.   

• A validation dataset, which used for evaluating and subsequently tuning the model.   

• A test dataset, (also known as the holdout dataset), which is used for testing the tuned model. 

If unlimited suitable data is available, the amount of data used in the ML workflow for training, 
evaluation and testing typically depends on the following factors: 

• The algorithm used to train the model. 

• The availability of resources, such as RAM, disk space, computing power, network bandwidth 
and the available time. 

In practice, due to the challenge of acquiring sufficient suitable data, the training and validation 
datasets are often derived from a single combined dataset. The test dataset is kept separate and is 
not used during training. This is to ensure the developed model is not influenced by the test data, and 
so that test results give a true reflection of the model’s quality   

There is no optimal ratio for splitting the combined dataset into the three individual datasets, but the 
typical ratios which may be used as a guideline range from 60:20:20 to 80:10:10 (training: validation: 
test).  Splitting the data into these datasets it is often done randomly, unless the dataset is small or if 
there is a risk of the resultant datasets not being representative of the expected operational data. 

If limited data is available, then splitting the available data into three datasets may result in insufficient 
data being available for effective training.  To overcome this issue, the training and validation datasets 
may be combined (keeping the test dataset separate), and then used to create multiple split 
combinations of this dataset (e.g., 80% training / 20% validation). Data is then randomly assigned to 
the training and validation datasets. Training, validation and tuning are performed using these multiple 
split combinations to create multiple tuned models, and the overall model performance may be 
calculated as the average across all runs.  There are various methods used for creating multiple split 
combinations, which include split-test, bootstrap, K-fold cross validation and leave-one-out cross 
validation (see [B02] for more details). 

4.2.1 Hands-On Exercise: Identify Training and Test Data and Create an ML Model 
Split the previously prepared data (see Section 4.1.2) into training, validation and test datasets. 

Train and test a classification model using supervised learning with these datasets.   

Explain the difference between evaluating/tuning and testing by comparing the accuracy achieved 
with the validation and test datasets. 

4.3 Dataset Quality Issues 
Typical quality issues relating to the data in a dataset include, but are not limited to, those shown in 
the following table: 

 



Certified Tester  
AI Testing (CT-AI) 
Syllabus  

 

v1.0 Page 37 of 100 2021-10-01 
© International Software Testing Qualifications Board 

Quality Aspect  Description 

Wrong data The captured data was incorrect (e.g., through a faulty sensor) or entered 
incorrectly (e.g., copy-paste errors).  

Incomplete data 
Data values may be missing (e.g., a field in a record may be empty, or the 
data for a particular time interval may have been omitted).  There can be 
various reasons for incomplete data, including security issues, hardware 
issues, and human error. 

Mislabeled data There are several possible reasons for data to be mislabeled (see Section 
4.5.2). 

Insufficient data 
Insufficient data is available for patterns to be recognized by the learning 
algorithms in use (note that the minimum required quantity of data will vary 
for different algorithms). 

Data not pre-
processed 

Data should be pre-processed to ensure it is clean, in a consistent format and 
contains no unwanted outliers (see Section 4.1). 

Obsolete data 
Data used for both learning and prediction should be current as possible (e.g., 
using financial data from several years ago may well lead to inaccurate 
results). 

Unbalanced data 
Unbalanced data may result from inappropriate bias (e.g., based on race, 
gender, or ethnicity), poor placement of sensors (e.g., facial recognition 
cameras placed at ceiling height), variability in the availability of datasets, 
and differing motivations of data suppliers. 

Unfair data 
Fairness is a subjective quality characteristic but can often be identified. For 
example, to support diversity or gender balancing, selected data may be 
positively biased towards minorities or disadvantaged groups (note that such 
data may be considered fair but may not be balanced).   

Duplicate data Repeated data records may unduly influence the resultant ML model. 

Irrelevant data Data that is not relevant to the problem being addressed may adversely 
influence the results and may lead to wasting resources. 

Privacy issues Any data use should respect the relevant data privacy laws (e.g., GDPR with 
relation to individuals’ personal information in the European Union). 

Security issues Fraudulent or misleading data that has been deliberately inserted into the 
training data may lead to inaccuracy in the trained model. 

 



Certified Tester  
AI Testing (CT-AI) 
Syllabus  

 

v1.0 Page 38 of 100 2021-10-01 
© International Software Testing Qualifications Board 

4.4 Data Quality and its Effect on the ML Model 
The quality of the ML model is highly dependent on the quality of the dataset from which it is created.  
Poor quality data can result in both flawed models and flawed predictions.   

The following categories of defects result from data quality issues: 

• Reduced accuracy: These defects are caused by data which is wrong, incomplete, 
mislabeled, insufficient, obsolete, irrelevant, and data which is not pre-processed.  For 
example, if the data was used to build a model of expected house prices, but the training data 
contained little or no data on detached houses with conservatories, then the predicted prices 
for this specific house type would probably be inaccurate. 

• Biased model: These defects are caused by data which is incomplete, unbalanced, unfair, 
lacking diversity, or duplicated.  For example, if the data from a particular feature is missing 
(e.g., all the medical data for disease prediction is gathered from subjects of one particular 
gender), then this is likely to have an adverse effect on the resultant model (unless the model 
is only to be used to make predictions for that gender operationally). 

• Compromised model: These defects are due to data privacy and security restrictions . For 
example, privacy issues in the data can lead to security vulnerabilities, which would enable 
attackers to reverse engineer information from the models and might subsequently cause 
leakage of personal information. 

4.5 Data Labelling for Supervised Learning 
Data labelling is the enrichment of unlabeled (or poorly labeled) data by adding labels, so it becomes 
suitable for use in supervised learning.  Data labelling is a resource-intensive activity that has been 
reported to use, on average, 25% of the time on ML projects [B11]. 

In its simplest form, data labelling can consist of putting images or text files in various folders, based 
on their classes.  For example, putting all text files of positive product reviews into one folder and all 
negative reviews into another folder.  Labelling objects in images by drawing rectangles around them 
is another common labelling technique, often known as annotation.  More complex annotations could 
be required for labelling 3D objects or for drawing bounding boxes around irregular objects.  Data 
labelling and annotation are typically supported by tools. 

4.5.1 Approaches to Data Labelling  
Labelling may be performed in a number of ways:  

• Internal: The labelling is performed by developers, testers or a team within the organization 
which is set up for the labelling.   

• Outsourced: The labelling is done by an external specialist organization. 

• Crowdsourced: The labelling is performed by a large group of individuals.  Due to the difficulty 
of managing the quality of the labelling, several annotators may be asked to label the same 
data and a decision then taken on the label to be used. 

• AI-Assisted: AI-based tools are used to recognize and annotate data or to cluster similar data.  
The results are then confirmed or perhaps supplemented (e.g., by modifying the bounding 
box) by a human, as part of a two-step process.   
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• Hybrid: A combination of the above labelling approaches could be used. For example, 
crowdsourced labelling is typically managed by an external organization which has access to 
specialized AI-based crowd-management tools. 

Where applicable, it may be possible to reuse a pre-labeled dataset, hence avoiding the need for data 
labelling altogether.  Many such datasets are publicly available, for example, from Kaggle [R16]. 

4.5.2 Mislabeled Data in Datasets 
Supervised learning assumes that the data is correctly labeled by the data annotators.  However, it is 
rare in practice for all items in a dataset to be labeled correctly.  Data is mislabeled for the following 
reasons:  

• Random errors may be made by annotators (e.g., pressing the wrong button). 

• Systemic errors may be made, (e.g., where the labelers are given the wrong instructions or 
poor training). 

• Deliberate errors may be made by malicious data annotators. 

• Translation errors may take correctly labeled data in one language and mislabel it in another. 

• Where the choice is open to interpretation, subjective judgements made by data annotators 
may lead to conflicting data labels from different annotators. 

• Lack of required domain knowledge may lead to incorrect labelling. 

• Complex classification tasks can result in more errors being made. 

• The tools used to support data labelling have defects that lead to incorrect labels. 

• ML-based approaches to labelling are probabilistic, and this can lead to some incorrect 
labels.  
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5 ML Functional Performance Metrics – 120 minutes 
Keywords 

None 

AI-Specific Keywords 

Accuracy, area under curve (AUC), confusion matrix, F1-score, inter-cluster metrics, intra-cluster 
metrics, mean square error (MSE), ML benchmark suites, ML functional performance metrics, 
precision, recall, receiver operating characteristic (ROC) curve, regression model, R-squared, 
silhouette coefficient 

Learning Objectives for Chapter 5: 

5.1 Confusion Matrix 

AI-5.1.1 K3 Calculate the ML functional performance metrics from a given set of confusion matrix 
data. 

5.2 Additional ML Functional Performance Metrics for Classification, Regression and 
Clustering 

AI-5.2.1 K2 Contrast and compare the concepts behind the ML functional performance metrics for 
classification, regression and clustering methods. 

5.3 Limitations of ML Functional Performance Metrics 

AI-5.3.1 K2 Summarize the limitations of using ML functional performance metrics to determine 
the quality of the ML system. 

5.4 Selecting ML Functional Performance Metrics 

AI-5.4.1 K4 Select appropriate ML functional performance metrics and/or their values for a given 
ML model and scenario. 

HO-5.4.1 H2 Evaluate the created ML model using selected ML functional performance metrics 

5.5 Benchmark Suites for ML  

AI-5.5.1 K2 Explain the use of benchmark suites in the context of ML  
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5.1 Confusion Matrix 
In a classification problem, a model will rarely predict the results correctly all the time.  For any such 
problem, a confusion matrix can be created with the following possibilities: 

 

  Actual 

  Positive Negative 

Predicted 

Positive 
True Positive 

(TP) 
False Positive 

(FP) 

Negative 
False Negative 

(FN) 
True Negative 

(TN) 

 

Figure 2: Confusion Matrix 

 

Note that the confusion matrix shown in Figure 2 may be presented differently but will always 
generate values for the four possible situations of true positive (TP), true negative (TN), false positive 
(FP) and false negative (FN). 

Based on the confusion matrix, the following metrics are defined: 

• Accuracy 

Accuracy = (TP + TN) / (TP +TN + FP + FN) * 100% 

Accuracy measures the percentage of all correct classifications.   

• Precision 

Precision = TP / (TP + FP) * 100% 

Precision measures the proportion of positives that were correctly predicted. It is a measure 
of how sure one can be about positive predictions. 

• Recall 

Recall = TP / (TP + FN) * 100% 

Recall (also known as sensitivity) measures the proportion of actual positives that were 
predicted correctly. It is a measure of how sure one can be about not missing any positives.   

• F1-score 

F1-score = 2* (Precision * Recall) / (Precision + Recall) 

F1-score is computed as the harmonic mean of precision and recall.  It will have a value 
between zero and one.  A score close to one indicates that false data has little influence on 
the result.  A low F1-score suggests that the model is poor at detecting positives. 
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5.2 Additional ML Functional Performance Metrics for Classification, 
Regression and Clustering 

There are numerous metrics for different types of ML problems (in addition to those related to 
classification described in Section 5.1).  Some of the most commonly used metrics are described 
below. 

Supervised Classification Metrics 

• The receiver operating characteristic (ROC) curve is a graphical plot that illustrates the ability 
of a binary classifier as its discrimination threshold is varied.  The method was originally 
developed for military radars, which is why it is so named.  The ROC curve is plotted with true 
positive rate (TPR) (also known as recall) against the false positive rate (FPR = FP / (TN + 
FP)), with TPR on the y axis and FPR on the x axis. 

• The area under curve (AUC) is the area under the ROC curve.  It represents the degree of 
separability of a classifier, showing how well the model distinguishes between classes.  With 
a higher AUC, the model’s predictions are better. 

Supervised Regression Metrics 

For supervised regression models, the metrics represent how well the regression line fits the actual 
data points. 

• Mean Square Error (MSE) is the average of the squared differences between the actual value 
and the predicted value.  The value of MSE is always positive, and a value closer to zero 
suggests a better regression model.  By squaring the difference, it ensures positive and 
negative errors do not cancel each other out.   

• R-squared (also known as the coefficient of determination) is a measure of how well the 
regression model fits the dependent variables. 

Unsupervised Clustering Metrics 

For unsupervised clustering, there are several metrics that represent the distances between the 
various clusters and the closeness of data points within a given cluster.   

• Intra-cluster metrics measure the similarity of data points within a cluster. 

• Inter-cluster metrics measure the similarity of data points in different clusters. 

• The silhouette coefficient (also known as silhouette score) is a measure (between -1 and +1) 
based on the average inter-cluster and intra-cluster distances.  A score of +1 means the 
clusters are well-separated, a score of zero implies random clustering, and a score of -1 
means the clusters are wrongly assigned. 

5.3 Limitations of ML Functional Performance Metrics 
ML functional performance metrics are limited to measuring the functionality of the model, e.g., in 
terms of accuracy, precision, recall, MSE, AUC and the silhouette coefficient.  They do not measure 
other non-functional quality characteristics, such as those defined in ISO 25010 [S06] (e.g., 
performance efficiency) and those described in Chapter 2, (e.g., explainability, flexibility, and 
autonomy).  In this syllabus, the term “ML functional performance metrics” is used because of the 
widespread use of the term “performance metrics” to refer to these functional metrics. Adding “ML 
functional” highlights that these metrics are specific to machine learning and have no relationship to 
performance efficiency metrics. 
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ML functional performance metrics are constrained by several other factors: 

• For supervised learning, the ML functional performance metrics are calculated on the basis of 
labeled data, and the accuracy of the resultant metrics depends on correct labelling (see 
Section 4.5). 

• The data used for measurement may not be representative (e.g., it may be biased) and the 
generated ML functional performance metrics depend on this data (see Section 2.4).  

• The system may comprise several components, but the ML functional performance metrics 
only applies to the ML model.  For example, the data pipeline is not considered by the ML 
functional performance metrics to evaluate the model. 

• Most of the ML functional performance metrics can only be measured with support from tools. 

5.4 Selecting ML Functional Performance Metrics 
It is not normally possible to build an ML model that achieves the highest score for all of the ML 
functional performance metrics generated from a confusion matrix.  Instead, the most appropriate ML 
functional performance metrics are selected as acceptance criteria, based on the expected use of the 
model (e.g., to minimize false positives, a high value of precision is required, whereas to minimize 
false negatives, the recall metric should be high).  The following criteria can be used when selecting 
the ML functional performance metrics described in Sections 5.1 and 5.2: 

• Accuracy: This metric is likely to be applicable if the datasets are symmetric (e.g., false 
positive and false negative counts and costs are similar). This metric becomes a poor choice 
if one class of data dominates over the others, in which case the F1-score should be 
considered. 

• Precision: This can be a suitable metric when the cost of false positives is high and 
confidence in positive outcomes needs to be high.  A spam filter, (where classifying an email 
as spam is considered positive), is an example where high precision is required, as putting 
too many emails in the spam folder that are not actually spam will not be acceptable to most 
users.  When the classifier deals with situations where a very large percentage of cases are 
positive, then using precision alone is unlikely to be a good choice. 

• Recall: When it is critical that positives should not be missed, then a high recall score is 
important.  For example, missing any true positive results in cancer detection and marking 
them as negative (i.e., no cancer detected) is likely to be unacceptable.   

• F1-score – F1-score is most useful when there is an imbalance in the expected classes and 
when the precision and recall are of similar importance. 

In addition to the above metrics, several metrics are described in Section 5.2.  These may be 
applicable for given ML problems, for example: 

• The AUC for the ROC curve may be used for supervised classification problems. 

• MSE and R-squared may be used for supervised regression problems. 

• Inter-cluster metrics, intra-cluster metrics and the silhouette coefficient may be used for 
unsupervised clustering problems. 
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5.4.1 Hands-On Exercise: Evaluate the Created ML Model 
Using the classification model trained in the previous exercise, calculate and display the values for 
accuracy, precision, recall and F1-score.  Where applicable, use the library functions provided by your 
development framework to perform the calculations. 

5.5 Benchmark Suites for ML 
New AI technologies such as new datasets, algorithms, models, and hardware are released regularly, 
and it can be difficult to determine the relative efficacy of each new technology. 

To provide objective comparisons between these different technologies, industry-standard ML 
benchmark suites are available.  These cover a wide range of application areas, and provide tools to 
evaluate hardware platforms, software frameworks and cloud platforms for AI and ML performance. 

ML benchmark suites can provide various measures, including training times (e.g., how fast a 
framework can train an ML model using a defined training dataset to a specified target quality metric, 
such as 75% accuracy), and inference times (e.g., how fast a trained ML model can perform 
inference).   

ML benchmark suites are provided by several different organizations, such as: 

• MLCommons [R18]: This is a not-for-profit organization formed in 2020 and previously named 
ML Perf, which provides benchmarks for software frameworks, AI-specific processors and ML 
cloud platforms. 

• DAWNBench [R19]: This is an ML benchmark suite from Stanford University. 

• MLMark [R20]: This is an ML benchmark suite designed to measure the performance and 
accuracy of embedded inference from the Embedded Microprocessor Benchmark 
Consortium. 
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6 ML - Neural Networks and Testing – 65 minutes 
Keywords 

None 

AI-Specific Keywords 

Activation value, deep neural network (DNN), ML training data, multi-layer perceptron, neural network, 
neuron coverage, perceptron, sign change coverage, sign-sign coverage, supervised learning, 
threshold coverage, training data, value change coverage 

Learning Objectives for Chapter 6: 

6.1 Neural Networks 

AI-6.1.1 K2 Explain the structure and function of a neural network including a DNN. 

HO-6.1.1 H1 Experience the implementation of a perceptron. 

6.2 Coverage Measures for Neural Networks 

AI-6.2.1 K2 Describe the different coverage measures for neural networks. 
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6.1 Neural Networks 
Artificial neural networks were initially intended to mimic the functioning of the human brain, which can 
be thought of as many connected biological neurons.  The single-layer perceptron is one of the first 
examples of the implementation of an artificial neural network and comprises a neural network with 
just one layer (i.e., a single neuron).  It can be used for supervised learning of classifiers, which 
decide whether an input belongs to a specific class or not. 

Most current neural networks are considered to be deep neural networks because they comprise 
several layers and can be considered as multi-layer perceptrons (see Figure 3). 

 
 

Figure 3 Structure of a deep neural network 

 

A deep neural network comprises three types of layers.  The input layer receives inputs, for example 
pixel values from a camera.  The output layer provides results to the outside world. This might be, for 
example, a value signifying the likelihood that the input image is a cat.  Between the input and output 
layers are hidden layers made up of artificial neurons, which are also known as nodes.  The neurons 
in one layer are connected to each of the neurons in the next layer and there may be different 
numbers of neurons in each successive layer.  The neurons perform computations and pass 
information across the network from the input neurons to the output neurons. 
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Figure 4 Computation performed by each neuron 

 

As shown in Figure 4, the computation performed by each neuron (except those in the input layer) 
generates what is known as the activation value. This value is calculated by running a formula (the 
activation function) that receives as input the activation values from all the neurons in the previous 
layer, the weights assigned to the connections between the neurons (these weights change as the 
network learns), and the individual bias of each neuron. Note that this bias is a preset constant value 
and is not related to the bias considered earlier in Section 2.4).  Running different activation functions 
can result in different activation values being calculated. These values are typically centered around 
zero and have a range between -1 (meaning that the neuron is “disinterested”) and +1 (meaning that 
the neuron is “very interested”). 

When training the neural network, each neuron is preset to a bias value and the training data is 
passed through the network, with each neuron running the activation function, to eventually generate 
an output.  The generated output is then compared with the known correct result (labeled data is used 
in this example of supervised learning).  The difference between the actual output and the known 
correct result is then fed back through the network to modify the values of the weights on the 
connections between the neurons in order to minimize this difference.  As more training data is fed 
through the network, the weights are gradually adjusted as the network learns. Ultimately, the outputs 
produced are considered good enough to end training. 

6.1.1 Hands-On Exercise: Implement a Simple Perceptron 
Students will be led through an exercise demonstrating a Perceptron learning a simple function, such 
as an AND function. 

The exercise should cover how a Perceptron learns by modifying weights across a number of epochs 
until the error is zero. Various mechanisms may be used for this activity (e.g., spreadsheet, 
simulation). 
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6.2 Coverage Measures for Neural Networks 
Achieving white-box test coverage criteria (e.g., statement, branch, modified condition/decision 
coverage (MC/DC) [I01] is mandatory for compliance with some safety-related standards [S07] when 
using traditional imperative source code, and is recommended by many test practitioners for other 
critical applications.  Monitoring and improving coverage supports the design of new test cases, 
leading to increased confidence in the test object.  

Using such measures for measuring the coverage of neural networks provides little value as the same 
code tends to be run each time the neural network is executed.  Instead, coverage measures have 
been proposed based on the coverage of the structure of the neural network itself, and more 
specifically, the neurons within it.  Most of these measures are based on the activation values of the 
neurons. 

Coverage for neural networks is a new research area.  Academic papers have only been published 
since 2017, and as such, there is little objective evidence available (e.g., duplicated research results) 
that show the proposed measures are effective.  It should be noted, however, that despite statement 
and decision coverage having been used for over 50 years, there is also little objective evidence of 
their relative effectiveness, even though they have been mandated for measuring coverage of 
software in safety-related applications, such as medical devices and avionics systems. 

The following coverage criteria for neural networks have been proposed and applied by researchers 
to a variety of applications: 

• Neuron coverage: Full neuron coverage requires that each neuron in the neural network 
achieves an activation value greater than zero [B12].  This is very easy to achieve in practice 
and research has shown that almost 100% coverage is achieved with very few test cases on 
a variety of deep neural networks.  This coverage measure may be most useful as an alarm 
signal when it is not achieved. 

• Threshold coverage: Full threshold coverage requires that each neuron in the neural network 
achieves an activation value greater than a specified threshold. The researchers who created 
the DeepXplore framework actually suggested that neuron coverage should be measured 
based on the activation value exceeding a threshold which would change based on the 
situation. They performed their research with a threshold of 0.75 when they reported 
efficiently finding thousands of incorrect corner case behaviors using this white-box approach.  
This type of coverage has been renamed here to distinguish it more easily from neuron 
coverage with a threshold set to zero, as some other researchers use the term “neuron 
coverage” to mean neuron coverage with a threshold of zero.   

• Sign-Change coverage: To achieve full sign-change coverage, test cases need to cause each 
neuron to achieve both positive and negative activation values [B13].   

• Value-Change coverage: To achieve full value-change coverage, test cases need to cause 
each neuron to achieve two activation values, where the difference between the two values 
exceeds some chosen value [B13]. 

• Sign-Sign coverage: This coverage considers pairs of neurons in adjacent layers and the sign 
taken by their activation values.  For a pair of neurons to be considered covered, a test case 
needs to show that changing the sign of a neuron in the first layer causes the neuron in the 
second layer to change its sign, while the signs of all other neurons in the second layer 
remain unchanged [B13]. This is a similar concept to MC/DC coverage for imperative source 
code.  

Researchers have reported on further coverage measures based on layers (although simpler than 
sign-sign coverage), and a successful approach using nearest neighbor algorithms to identify 
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meaningful change in neighboring sets of neurons has been implemented in the TensorFuzz tool 
[B14]. 
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7 Testing AI-Based Systems Overview – 115 minutes 
Keywords 

Input data testing, ML model testing 

AI-Specific Keywords 

AI component, automation bias, big data, concept drift, data pipeline, ML functional performance 
metrics, training data 

Learning Objectives for Chapter 7: 

7.1 Specification of AI-Based Systems 

AI-7.1.1 K2 Explain how system specifications for AI-based systems can create challenges in 
testing. 

7.2 Test Levels for AI-Based Systems 

AI-7.2.1 K2 Describe how AI-based systems are tested at each test level 

7.3 Test Data for Testing AI-Based Systems 

AI-7.3.1 K1 Recall those factors associated with test data that can make testing AI-based 
systems difficult. 

7.4 Testing for Automation Bias in AI-Based Systems 

AI-7.4.1 K2 Explain automation bias and how this affects testing. 

7.5 Documenting an ML Model 

AI-7.5.1 K2 Describe the documentation of an AI component and understand how documentation 
supports the testing of AI-based systems. 

7.6 Testing for Concept Drift 

AI-7.6.1 K2 Explain the need for frequently testing the trained model to handle concept drift. 

7.7 Selecting a Test Approach for an ML System 

AI-7.7.1 K4 For a given scenario determine a test approach to be followed when developing an 
ML system. 
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7.1 Specification of AI-Based Systems 
System requirements and design specifications are equally important for both AI-based systems and 
conventional systems.  These specifications provide the basis for testers to check whether actual 
system behavior aligns with the specified requirements.  However, if the specifications are incomplete 
and lack testability, this introduces a test oracle problem (see Section 8.7). 

There are several reasons why the specification of AI-based systems can be particularly challenging: 

• In many AI-based systems projects, requirements are specified only in terms of high-level 
business goals and required predictions.  A reason for this is the exploratory nature of AI-
based system development.  Often, AI-based systems projects start with a dataset, and the 
goal is to determine which predictions can be obtained from that data. This is in contrast with 
specifying the required logic from the start of a conventional project. 

• The accuracy of the AI-based system is often unknown until the test results from independent 
testing are available.  Along with the exploratory development approach, this often leads to 
inadequate specifications as implementation is already in progress by the time the desired 
acceptance criteria are determined. 

• The probabilistic nature of many AI-based systems can make it necessary to specify 
tolerances for some of the expected quality requirements, such as the accuracy of 
predictions. 

• Where the system goals call for replicating human behavior, rather than providing specific 
functionality, this often leads to poorly specified behavior requirements based on the system 
being as good as, or better than the human activities it aims to replace.  This can make it 
difficult to define a test oracle, especially when the humans it is replacing vary widely in their 
capabilities. 

• Where AI is used to implement user interfaces, such as by natural language recognition, 
computer vision, or physical interaction with humans, the systems need to demonstrate 
increased flexibility.  However, such flexibility can also create challenges in identifying and 
documenting all the different ways in which such interactions might happen. 

• Quality characteristics specific to AI-based systems, such as adaptability, flexibility, evolution, 
and autonomy, need to be considered and defined as part of requirements specification (see 
Chapter 2).  The novelty of these characteristics can make them difficult to define and test. 

7.2 Test Levels for AI-Based Systems 
AI-based systems typically comprise both AI and non-AI components.  Non-AI components can be 
tested using conventional approaches [I01], while AI components and systems containing AI 
components may need to be tested differently in some respects, as described below.  For all test 
levels that include the testing of AI components, it is important for the testing to be closely supported 
by data engineers/scientists and domain experts. 

A major difference from the test levels used for conventional software is the inclusion of two new 
specialized test levels to explicitly handle the testing of the input data and the models used in AI-
based systems [B15].  Most of this section is applicable to all AI-based systems, although some parts 
are specifically focused on ML. 
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7.2.1 Input Data Testing 
The objective of input data testing is to ensure that the data used by the system for training and 
prediction is of the highest quality (see Section 4.3).  It includes the following: 

• Reviews 

• Statistical techniques (e.g., testing data for bias) 

• EDA of the training data 

• Static and dynamic testing of the data pipeline 

The data pipeline typically comprises several components performing data preparation (see Section 
4.1), and the testing of these components includes both component testing and integration testing.  
The data pipeline for training may be quite different from the data pipeline used to support operational 
prediction. For training, the data pipeline can be considered a prototype, compared to the fully 
engineered, automated version used operationally.  For this reason, the testing of these two versions 
of the data pipeline may be quite distinct. However, testing the functional equivalence of the two 
versions should also be considered. 

7.2.2 ML Model Testing 
The objective of ML model testing is to ensure that the selected model meets any performance criteria 
that may have been specified. This includes: 

• ML functional performance criteria (see Sections 5.1 and 5.2) 

• ML non-functional acceptance criteria that are appropriate for the model in isolation, such as 
speed of training, speed of prediction, computing resources used, adaptability, and 
transparency.   

ML model testing also aims to determine that the choice of ML framework, algorithm, model, model 
settings and hyperparameters is as close to optimal as possible.  Where appropriate, ML model 
testing may also include testing to achieve white-box coverage criteria (see Section 6.2). The selected 
model is later integrated with other components, AI and non-AI. 

7.2.3 Component Testing 
Component testing is a conventional test level which is applicable to any non-model components, 
such as user interfaces and communication components. 

7.2.4 Component Integration Testing 
Component integration testing is a conventional test level which is conducted to ensure that the 
system components (both AI and non-AI) interact correctly.  It tests that the inputs from the data 
pipeline are received as expected by the model, and that any predictions produced by the model are 
exchanged with the relevant system components (e.g., the user interface) and used correctly by them.  
Where AI is provided as a service (see Section 1.7), it is normal to perform API testing of the provided 
service as part of component integration testing. 

7.2.5 System Testing 
System testing is a conventional test level which is conducted to ensure that the complete system of 
integrated components (both AI and non-AI) performs as expected, from both functional and non-
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functional viewpoints, in a test environment that is closely representative of the operational 
environment.  Depending on the system, this testing may take the form of field trials in the expected 
operational environment or testing within a simulator (e.g., if test scenarios are hazardous or difficult 
to replicate in an operational environment). 

During system testing, the ML functional performance criteria are re-tested to ensure that the test 
results from the initial ML model testing are not adversely affected when the model is embedded 
within a complete system.  This testing is especially important where the AI component has been 
deliberately changed (e.g., compressing a DNN to reduce its size).   

System testing  is also the test level in which many of the non-functional requirements for the system 
are tested.  For example, adversarial testing may be performed to test for robustness, and the system 
may be tested for explainability.  Where appropriate, interfaces with hardware components (e.g., 
sensors) may be tested as part of system testing. 

7.2.6 Acceptance Testing 
Acceptance testing is a conventional test level and is used to determine whether the complete system 
is acceptable to the customer.  For AI-based systems, the definition of acceptance criteria can be 
challenging (see Section 8.8).  Where AI is provided as a service (see Section 1.7), acceptance 
testing may be needed to determine the suitability of the service for the intended system and whether, 
for example, ML functional performance criteria have been sufficiently achieved. 

7.3 Test Data for Testing AI-based Systems 
Depending on the situation and the system under test (SUT), the acquisition of test data might 
present a challenge.  There are several potential challenges in dealing with test data for AI-based 
systems, including: 

• Big data (high-volume, high-velocity and high-variety data) can be difficult to create and 
manage.  For example, it may be difficult to create representative test data for a system that 
consumes large volumes of images and audio at a high speed. 

• Input data may need to change over time, particularly if it represents events in the real world.  
For example, recorded photographs to test a facial recognition system may need to be “aged” 
to represent the ageing of people over several years in real life. 

• Personal or otherwise confidential data may need special techniques for sanitization, 
encryption, or redaction. Legal approval for use may also be required. 

• When testers use the same implementation as the data scientists for data acquisition and 
data pre-processing, then defects in these steps may be masked. 

7.4 Testing for Automation Bias in AI-Based Systems 
One category of AI-based systems helps humans in decision-making. However, there is occasionally 
a tendency for humans to be too trusting of these systems.  This misplaced trust may be called either 
automation bias or complacency bias, and takes two forms.   

• The first form of automation/complacency bias is when the human accepts recommendations 
provided by the system and fails to consider inputs from other sources (including 
themselves).  For example, a procedure where a human keys data into a form might be 
improved by using machine learning to pre-populate the form, and the human then validates 
this data.  It has been shown that this form of automation bias typically reduces the quality of 



Certified Tester  
AI Testing (CT-AI) 
Syllabus  

 

v1.0 Page 54 of 100 2021-10-01 
© International Software Testing Qualifications Board 

decisions made by 5%, but this could be much greater depending on the system context 
[B16].  Similarly, the automatic correction of typed text (e.g., in mobile phone messages) is 
often faulty and could change the meaning. Users often do not notice this, and do not 
override the mistake. 

• The second form of automation/complacency bias is where the human misses a system 
failure because they do not adequately monitor the system.  For example, semi-autonomous 
vehicles are becoming increasingly self-driving, but still rely on a human to take over in the 
event of an imminent accident.  Typically, the human vehicle occupant gradually becomes too 
trusting of the system’s abilities to control the vehicle and they begin to pay less attention. 
This may lead to a situation where they are unable to react appropriately when needed. 

In both scenarios, testers should understand how human decision-making may be compromised, and 
test for both the quality of the system’s recommendations and the quality of the corresponding human 
input provided by representative users.  

7.5 Documenting an AI Component 
The typical content for the documentation of an AI component includes: 

• General: Identifiers, description, developer details, hardware requirements, license details, 
version, date and point of contact. 

• Design: Assumptions and technical decisions. 

• Usage: Primary and secondary use cases, typical users, approach to self-learning, known 
bias, ethical issues, safety issues, transparency, decision thresholds, platform and concept 
drift. 

• Datasets: Features, collection, availability, pre-processing requirements, use, content, 
labelling, size, privacy, security, bias/fairness and restrictions/constraints. 

• Testing: Test dataset (description and availability), independence of testing, test results, 
testing approach for robustness, explainability, concept drift and portability. 

• Training and ML Functional Performance: ML algorithm, weights, validation dataset, selection 
of ML functional performance metrics, thresholds for ML functional performance metrics, and 
actual ML functional performance metrics. 

 

Clear documentation helps improve the testing by providing transparency on the implementation of 
the AI-based system.  The key areas of documentation that are important to testing are: 

• The purpose of the system, and the specification of functional and non-functional 
requirements.  These types of documentation typically form part of the test basis. 

• Architectural and design information, outlining how the different AI and non-AI components 
interact. This supports the identification of integration testing objectives, and may provide a 
basis for white-box testing of the system structure. 

• The specification of the operating environment. This is required when testing the autonomy, 
flexibility and adaptability of the system.  

• The source of any input data, including associated metadata. This needs to be clearly 
understood when testing the following aspects: 

o Functional correctness of untrustworthy inputs 
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o Explicit or implicit sample bias  

o Flexibility, including the mis-learning from poor data inputs for self-learning systems 

• The way in which the system is expected to adapt to changes in its operational environment. 
This is needed as a test basis when testing for adaptability. 

• Details of expected system users. This is needed to ensure that testing can be made 
representative. 

7.6 Testing for Concept Drift 
The operational environment can change over time without the trained model changing 
correspondingly.  This phenomenon is known as concept drift and typically causes the outputs of the 
model to become increasingly less accurate and less useful.  For example, the impact of marketing 
campaigns may result in a change in the behavior of potential customers over a period of time.  Such 
changes could be seasonal or abrupt changes due to cultural, moral or societal changes which are 
external to the system.  An example of such an abrupt change is the impact of the COVID-19 
pandemic and its effect on the accuracy of the models used for sales projections and stock markets. 

Systems that may be prone to concept drift should be regularly tested against their agreed ML 
functional performance criteria, to ensure that any occurrences of concept drift are detected soon 
enough for the problem to be mitigated.  Typical mitigations may include retiring the system or re-
training the system. In the case of re-training, this would be performed with up-to-date training data 
and followed by confirmation testing, regression testing, and possibly a form of A/B testing (see 
Section 9.4), where the updated B-system must outperform the original A-system. 

7.7 Selecting a Test Approach for an ML System 
An AI-based system will typically include both AI and non-AI components.  The test approach is 
based on a risk analysis for such a system and will include both conventional testing as well as more 
specialized testing to address those factors specific to AI components and AI-based systems. 

The following list provides some typical risks and corresponding mitigations, specific to ML systems. 
Note that this list only provides a limited set of examples and that there are many more risks specific 
to ML systems that require mitigation through testing. 

 

Risk Aspect  Description and possible Mitigations 

Data quality may be lower 
than expected. 

This risk may become an issue in several ways, each of which may 
be prevented in different manners (see Section 4.4). Common 
mitigations include the use of reviews, EDA and dynamic testing. 

The operational data pipeline 
may be faulty. 

This risk can be partly mitigated by the dynamic testing of the 
individual pipeline components and the integration testing of the 
complete pipeline 

The ML workflow used to 
develop the model may be 
sub-optimal. 

This risk could be due to the following: 

• A lack of up-front agreement on the ML workflow to be 
followed 
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Risk Aspect  Description and possible Mitigations 

(See Section 3.2) • A poor choice of workflow 

• Data engineers failing to follow the workflow 

Reviews with experts may mitigate the chance of choosing the wrong 
workflow, while more hands-on management or audits could address 
the problems of agreement on and implementation of the workflow. 

The choice of ML framework, 
algorithm, model, model 
settings and/or 
hyperparameters may be 
sub-optimal. 

This risk could be due to a lack of expertise of the decision-makers, 
or to the poor implementation of the evaluation and tuning steps (or 
test step) of the ML workflow.  

Reviews with experts may mitigate the chance of taking wrong 
decisions, and better management may ensure that the evaluation 
and tuning (and test) steps of the workflow are followed. 

The desired ML functional 
performance criteria may not 
be delivered operationally, 
despite the ML component 
meeting those criteria in 
isolation.   

This risk could be due to the datasets used for training and testing 
the model in isolation not being representative of the data 
encountered operationally.   

Reviews of the selected datasets by experts (or users) may mitigate 
the chance that the selected data is not representative. 

The desired ML functional 
performance criteria are met, 
but the users may be 
unhappy with the delivered 
results. 

This risk could be due to the selection of the wrong performance 
criteria (e.g., high recall was selected when high precision was 
needed).   

Reviews with experts may mitigate the chance of choosing the wrong 
ML functional performance metrics, or experience-based testing 
could also identify inappropriate criteria.  The risk could also be due 
to concept drift, in which case more frequent testing of the 
operational system could mitigate the risk. 

The desired ML functional 
performance criteria are met, 
but the users may be 
unhappy with the delivered 
service.   

This risk could be due to a lack of focus on the system’s non-
functional requirements).  Note that the range of quality 
characteristics for AI-based systems extends beyond those listed in 
ISO/IEC 25010 (see Chapter 2). 

Using a risk-based approach to prioritize the quality characteristics 
and performing the relevant non-functional testing could mitigate this 
risk. 

Alternatively, the problem could be due to a combination of factors 
that could be identified through experience-based testing, as part of 
system testing. Chapter 8 provides guidance on how to test these 
characteristics. 
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Risk Aspect  Description and possible Mitigations 

The self-learning system may 
not be providing the service 
expected by users.   

This risk could be due to various reasons, for example:   

• The data used by the system for self-learning may be 
inappropriate.  In this case, reviews by experts could identify 
the problematic data.   

• The system may be failing due to new self-learnt functionality 
being unacceptable.  This could be mitigated by automated 
regression testing including performance comparison with the 
previous functionality.   

• The system may be learning in a way that is not expected by 
the users, which could be detected by experience-based 
testing. 

Users may be frustrated by 
not understanding how the 
system determines its 
decisions 

This risk could be due to a lack of explainability, interpretability 
and/or transparency.  See Section 8.6 for details on how to test for 
these characteristics. 

Users may find that the 
model provides excellent 
predictions when the data is 
similar to the training data but 
provides poor results 
otherwise. 

This risk may be due to overfitting (see Section 3.5.1), which may be 
detected by testing the model with a dataset that is completely 
independent from the training dataset or performing experience-
based testing. 
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8 Testing AI-Specific Quality Characteristics – 150 
minutes 

Keywords  

Test oracle 

AI-Specific Keywords 

Algorithmic bias, autonomous system, autonomy, expert system, explainability, inappropriate bias, 
interpretability, LIME method, ML training data, non-deterministic system, probabilistic system, 
sample bias, self-learning system, transparency 

Learning Objectives for Chapter 8: 

8.1 Challenges Testing Self-Learning Systems 

AI-8.1.1 K2 Explain the challenges in testing created by the self-learning of AI-based systems. 

8.2 Testing Autonomous AI-Based Systems 

AI-8.2.1 K2 Describe how autonomous AI-based systems are tested 

8.3 Testing for Algorithmic, Sample and Inappropriate Bias 

AI-8.3.1 K2 Explain how to test for bias in an AI-based system. 

8.4 Challenges Testing Probabilistic and Non-Deterministic AI-Based Systems 

AI-8.4.1 K2 Explain the challenges in testing created by the probabilistic and non-deterministic 
nature of AI-based systems. 

8.5 Challenges Testing Complex AI-based Systems 

AI-8.5.1 K2 Explain the challenges in testing created by the complexity of AI-based systems. 

8.6 Testing the Transparency, Interpretability and Explainability of AI-based Systems 

AI-8.6.1 K2 Describe how the transparency, interpretability and explainability of AI-based systems 
can be tested. 

HO-8.6.1 H2 Use a tool to show how explainability can be used by testers. 

8.7 Test Oracles for AI-Based Systems 

AI-8.7.1 K2 Explain the challenges in creating test oracles resulting from the specific 
characteristics of AI-based systems. 

8.8 Test Objectives and Acceptance Criteria 

AI-8.8.1 K4 Select appropriate test objectives and acceptance criteria for the AI-specific quality 
characteristics of a given AI-based system.  
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8.1 Challenges Testing Self-Learning Systems 
There are several potential challenges to overcome when testing self-learning systems (see Chapter 
2 for more details on these systems), including: 

• Unexpected change: The original requirements and constraints within which the system 
should work are generally known, but there may be little or no information available on the 
changes made by the system itself.  It is normally possible to test against the original 
requirements and design (and any specified constraints), but if the system has devised an 
innovative implementation or gamed a solution (the implementation of which cannot be seen), 
it may be difficult to design tests which are appropriate for this new implementation.  In 
addition, when systems change themselves (and their outputs), the results of previously 
passing tests can change.  This is a test design challenge. It may be addressed by designing 
appropriate tests that remain relevant as the system changes its behavior, so preventing a 
potential regression testing problem. However, it may also require new tests to be designed 
based on observed new system behaviors. 

• Complex acceptance criteria: It may be necessary to define expectations for improvement by 
the system when it self-learns.  For example, it may be assumed that if the system changes 
itself, its overall functional performance should improve.  Additionally, specifying anything 
other than simple “improvement” can quickly become complex.  For example, a minimum 
improvement might be expected (rather than simply any improvement), or the required 
improvement may be linked to environmental factors (e.g., a minimum 10% improvement in 
functionality X is required if environmental factor F changes by more than Y).  These 
problems may be addressed through the specification and testing against the more complex 
acceptance criteria, and by maintaining a continuous record of the current system baseline 
functional performance. 

• Insufficient testing time: It may be necessary to know how quickly the system is expected to 
learn and adapt, given different scenarios.  These acceptance criteria may be difficult to 
specify and acquire.  If a system adapts quickly, there might be insufficient time to manually 
execute new tests after each change, so it may be necessary to write tests that can be run 
automatically when the system changes itself.  These challenges can be addressed through 
the specification of appropriate acceptance criteria (see Section 8.8) and automated 
continuous testing. 

• Resource requirements: The system requirements might include acceptance criteria for the 
resources which the system is permitted to use when performing self-learning or adaptation. 
This may include, for example, the amount of processing time and memory allowed to be 
used to improve.  Additionally, consideration needs to be given on whether this resource 
usage should be linked to a measurable improvement in functionality or accuracy.  This 
challenge affects the specification of acceptance criteria. 

• Insufficient specifications of operational environment: A self-learning system may change if 
the environmental inputs that it receives are outside expected ranges, or if they are not 
reflected in the training data.  These inputs may be attacks in the form of data poisoning (see 
Section 9.1.2).  It can be difficult to predict the full range of operational environments and 
environmental changes, and to therefore identify the full set of representative test cases and 
environmental requirements.  Ideally, the full scope of possible changes in the operational 
environment to which the system is expected to respond will be defined as acceptance 
criteria. 

• Complex test environment: Managing the test environment to ensure it can mimic all the 
potential high-risk operational environment changes is a challenge and may involve the use of 
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test tools (e.g., a fault injection tool).  Depending on the nature of the operating environment, 
this may be tested by manipulating inputs and sensors, or by obtaining access to different 
physical environments in which the system can be tested. 

• Undesirable behavior modifications: A self-learning system modifies its behavior based on its 
inputs and it may not be possible for testers to prevent this from occurring. This may arise, for 
example, if a third-party system is being used, or if the production system is being tested.  By 
repeating the same tests, a self-learning system may become more effective at responding to 
those tests, which may then influence the long-term behavior of the system.  It is therefore 
important to prevent a situation where the testing causes a self-learning system to adversely 
change its behavior.  This is a challenge for test case design and test management. 

8.2 Testing Autonomous AI-Based Systems 
Autonomous systems must be able to determine when they require human intervention and when 
they do not.  Therefore, testing the autonomy of AI-based systems requires that conditions are 
created for the system to exercise this decision-making.   

Testing for autonomy may require: 

• Testing whether the system requests human intervention for a specific scenario when the 
system should be relinquishing control.  Such scenarios could include a change to the 
operational environment, or the system exceeding the limits of its autonomy. 

• Testing whether the system requests human intervention when the system should be 
relinquishing control after a specified period of time. 

• Testing whether the system unnecessarily requests human intervention when it should still be 
working autonomously. 

It may be helpful to use boundary value analysis applied to the operating environment to generate the 
necessary conditions for this testing.  It can be challenging to define how the parameters that 
determine autonomy manifest themselves in the operating environment, and to create the test 
scenarios which depend on the nature of the autonomy. 

8.3 Testing for Algorithmic, Sample and Inappropriate Bias 
An ML system should be evaluated against the different biases and actions taken to remove 
inappropriate bias. This may involve positive bias being deliberately introduced to counter the 
inappropriate bias.  

Testing with an independent dataset can often detect bias.  However, it can be difficult to identify all 
the data that causes bias because the ML algorithm can use combinations of seemingly unrelated 
features to create unwanted bias.  

AI-based systems should be tested for algorithmic bias, sample bias and inappropriate bias (see 
Section 2.4).  This may involve: 

• Analysis during the model’s training, evaluation and tuning activities to identify whether 
algorithmic bias is present.  

• Reviewing the source of the training data and the processes used to acquire it, such that the 
presence of sample bias can be identified. 

• Reviewing the pre-processing of data as part of the ML workflow to identify whether the data 
has been affected in a way that could cause sample bias. 
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• Measuring how changes in system inputs affect system outputs over a large number of 
interactions, and examining the results based on the groups of people or objects that the 
system may be inappropriately biased towards, or against.  This is similar to the LIME (Local 
Interpretable Model-Agnostic Explanations) method discussed in 8.6, and may be carried out 
in a production environment as well as part of testing prior to release. 

• Obtaining additional information concerning the attributes of the input data potentially related 
to bias and correlating it to the results.  This could relate to demographic data, for example, 
which might be appropriate when testing for inappropriate bias that affects groups of people, 
where membership of a group is relevant to assessing bias but is not an input to the model.  
This is because the bias can be based on “hidden” variables which are not explicitly present 
in the input data, but are inferred by the algorithm. 

8.4 Challenges Testing Probabilistic and Non-Deterministic AI-Based 
Systems 

Most probabilistic systems are also non-deterministic, and so the following list of testing challenges 
typically applies to AI-based systems with any of these attributes: 

• There may be multiple, valid outcomes from a test with the same set of preconditions and 
inputs. This makes the definition of expected results more challenging and can cause 
difficulties: 

o when tests are reused for confirmation testing. 

o when tests are reused for regression testing. 

o where reproducibility of testing is important. 

o when the tests are automated. 

• The tester typically requires a deeper knowledge of the required system behavior so that they 
can come up with reasonable checks for whether the test has passed rather than simply 
stating an exact value for the expected test result.  For example, testers may need to define 
more sophisticated expected results compared with conventional systems. These expected 
test results may include tolerances (e.g., “is the actual result within 2% of the optimal 
solution?”). 

• Where a single definitive output from a test is not possible due to the probabilistic nature of 
the system, it is often necessary for the tester to run a test several times in order to generate 
a statistically valid test result. 

8.5 Challenges Testing Complex AI-Based Systems 
AI-based systems are often used to implement tasks that are too complex for humans to perform.  
This can lead to a test oracle problem because testers are unable to determine the expected results 
as they would normally do (see Section 8.7).  For example, AI-based systems are often used to 
identify patterns in large volumes of data.  Such systems are used because they can find patterns that 
humans, even after much analysis, simply cannot find manually. Understanding the required behavior 
of such systems in sufficient depth to be able to generate expected results can be challenging. 

A similar problem arises when the internal structure of an AI-based system is generated by software, 
making it too complex for humans to understand.  This leads to the situation where the AI-based 
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system can only be tested as a black box.  Even when the internal structure is visible, this provides no 
additional useful information to help with the testing. 

The complexity of AI-based systems increases when they provide probabilistic results and are non-
deterministic in nature (see Section 8.4). 

The problems with non-deterministic systems are exacerbated when an AI-based system consists of 
several interacting components, each providing probabilistic results.  For example, a facial recognition 
system is likely to use one model to identify a face within an image, and a second model to recognize 
which face has been identified.  The interactions between AI components can be complex and difficult 
to comprehend, making it difficult to identify all the risks, and design tests that verify the system 
adequately. 

8.6 Testing the Transparency, Interpretability and Explainability of AI-
Based Systems 

Information on how the system has been implemented may be provided by the system developers.  
This may include the sources of training data, how labelling was conducted, and how the system 
components have been designed.  When this information is not available, it can make the design of 
tests challenging.  For example, if training data information is not available, then identifying potential 
gaps in such data and testing the impact of those gaps, becomes difficult.  This situation can be 
compared to black-box and white-box testing, and has similar advantages and disadvantages.  
Transparency can be tested by comparing the information documented on the data and algorithm to 
the actual implementation and determining how closely they match. 

With ML, it can often be more difficult to explain the link between a specific input and a specific 
output, than with conventional systems.  This low level of explainability is primarily because the model 
generating the output is itself generated by code (the algorithm) and does not reflect the way humans 
think about a problem.  Different ML models provide different levels of explainability and should be 
selected based on the requirements for the system, which may include explainability and testability. 

One method to understand explainability is through the dynamic testing of the ML model when 
applying perturbations to the test data.  Methods exist for quantifying explainability in this manner and 
for providing visual explanations of it.  Some of these methods are model-agnostic, while others are 
specific to a particular type of model and require access to it.  Exploratory testing can also be used to 
better understand the relationship between the inputs and outputs of a model. 

The LIME method is model-agnostic and uses dynamically injected input perturbations and the 
analysis of outputs to provide testers with a view of the relationship between inputs and outputs.  This 
can be an effective method for providing model explainability.  However it is limited to providing 
possible reasons for the outputs, rather than a definitive reason, and is not applicable for all types of 
algorithms. 

The interpretability of an AI-based system is heavily dependent on who this applies to.  Different 
stakeholders may have different requirements in terms of how well they need to grasp the underlying 
technology. 

Measuring and testing the level of understanding for both interpretability and explainability can be 
challenging as stakeholders will vary in their levels of ability and may not agree.  In addition, 
identifying the profile of typical stakeholders may be difficult for many types of systems. Where 
performed, this testing typically takes the form of user surveys and/or questionnaires. 
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8.6.1 Hands-On Exercise: Model Explainability 
Use an appropriate tool to provide explainability based on the previously created model.  For 
example, for an image classification model or a text classification model, a model-agnostic method, 
such as LIME, may be appropriate.   

Students should use the tool to generate explanations of model decisions; in particular, how the 
features in the inputs influence the outputs.  

8.7 Test Oracles for AI-Based Systems 
A major problem with the testing of AI-based systems can be the specification of expected results.  A 
test oracle is the source used to determine the expected result of a test [I01]. A challenge in 
determining expected results is known as the test oracle problem. 

With complex, non-deterministic or probabilistic systems, it can be difficult to establish a test oracle 
without knowing the “ground truth” (i.e., the actual result in the real world that the AI-based system is 
trying to predict).  This “ground truth” is distinct from a test oracle, in that a test oracle may not 
necessarily provide an expected value, but only a mechanism with which to determine whether the 
system is operating correctly or not.   

AI-based systems can evolve (see Section 2.3), and the testing of self-learning systems (see Section 
8.1) can also suffer from test oracle problems as they modify themselves and can thereby make it 
necessary to frequently update the functional expectations of the system. 

A further cause of difficulty in obtaining an effective test oracle is that in many cases, the correctness 
of the software behavior is subjective.  Virtual assistants (e.g., Siri and Alexa) are an example of this 
problem in that different user often have quite different expectations and may experience different 
results depending on their choice of words and clarity of speech. 

In some situations, it may be possible to define the expected result with limits or tolerances.  For 
example, the stopping point for an autonomous car could be defined as within a maximum distance of 
a specific point. In the context of expert systems, the determination of the expected results may be 
achieved by consulting an expert (noting that the expert’s opinion may still be wrong).  There are 
several important factors to consider in such circumstances:  

• Human experts vary in their levels of competence. Experts involved need to be at least as 
competent as the experts the system is intended to replace. 

• Experts may not agree with each other, even when presented with the same information. 

• Human experts may not approve of the automation of their judgement. In such cases their 
rating of potential outputs should be double-blind (i.e., neither the experts nor the evaluators 
of the outputs should know which ratings were automated). 

• Humans are more likely to caveat responses (e.g., with phrases like “I’m not sure, but...”).  If 
this kind of caveat is not available to the AI-based system, this should be considered when 
comparing the responses. 

Test techniques exist which can alleviate the test oracle problem, such as A/B testing (see Section 
9.4), back-to-back testing (see Section 9.3) and metamorphic testing (see Section 9.5). 

8.8 Test Objectives and Acceptance Criteria 
Test objectives and acceptance criteria for a system need to be based on the perceived product risks.  
These risks can often be identified from an analysis of the required quality characteristics.  The quality 
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characteristics for an AI-based system include those traditionally considered in ISO/IEC 25010 [S06] 
(i.e., functional suitability, performance efficiency, compatibility, usability, reliability, security, 
maintainability, and portability) but should also include a consideration of the following aspects: 

 

Aspect  Acceptance Criteria 

Adaptability 

• Check the system still functions correctly and meets non-functional 
requirements when it adapts to a change in its environment.  This may 
be implemented as a form of automated regression testing. 

• Check the time the system takes to adapt to a change in its 
environment. 

• Check the resources used when the system adapts to a change in its 
environment. 

Flexibility 

• Consider how the system copes in contexts outside the initial 
specification. This may be implemented as a form of automated 
regression testing executed in the changed operational environment. 

• Check the time the system takes and/or the resources used to change 
itself to manage a new context. 

Evolution 

• Check how well the system learns from its own experience. 

• Check how well the system copes when the profile of data changes 
(i.e., concept drift). 

Autonomy 

• Check how the system responds when it is forced outside of the 
operational envelope in which it is expected to be fully autonomous. 

• Check whether the system can be “persuaded” to request human 
intervention when it should be fully autonomous. 

Transparency, 
interpretability and 
explainability 

• Check transparency by reviewing the ease of accessing the algorithm 
and dataset. 

• Check interpretability and explainability by questioning system users, or, 
if the actual system users are not available, people with a similar 
background. 

Freedom from 
inappropriate bias 

• Where systems are likely to be affected by bias, then this can be tested 
by using an independent bias-free test suite, or by using expert 
reviewers. 

• Compare the test results using external data such as census data in 
order to check for unwanted bias on inferred variables (external validity 
testing). 

Ethics 

• Check the system against a suitable checklist, such as the EC 
Assessment List for Trustworthy Artificial Intelligence [R21], which 
supports the key requirements outlined by the Ethics Guidelines for 
Trustworthy Artificial Intelligence (AI) [R22]. 
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Aspect  Acceptance Criteria 

Probabilistic 
systems and non-
deterministic 
systems 

• This cannot be evaluated with precise acceptance criteria. When 
working correctly, the system may return slightly different results for the 
same tests. 

Side-effects 
• Identify potentially harmful side-effects and attempt to generate tests 

that cause the system to exhibit these side-effects. 

Reward Hacking 
• Independent tests can identify reward hacking when these tests use a 

different means of measuring success compared to the intelligent agent 
being tested. 

Safety 
• This needs to carefully evaluated, perhaps in a virtual test environment 

(see Section 10.2). This could include attempts to force a system to 
cause itself harm. 

 

For ML systems, the required ML functional performance metrics for the ML model should be 
specified (see Chapter 5). 
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9 Methods and Techniques for the Testing of AI-Based 
Systems – 245 minutes 

Keywords 

A/B testing, adversarial testing, back-to-back testing, error guessing, experience-based testing, 
exploratory testing, metamorphic relation (MR), metamorphic testing (MT), pairwise testing, pseudo-
oracle, test oracle problem, tours 

AI-Specific Keywords 

Adversarial attack, adversarial example, data poisoning, ML system, trained model 

Learning Objectives for Chapter 9: 

9.1 Adversarial Attacks and Data Poisoning 

AI-9.1.1 K2 Explain how the testing of ML systems can help prevent adversarial attacks and data 
poisoning. 

9.2 Pairwise Testing 

AI-9.2.1 K2 Explain how pairwise testing is used for AI-based systems. 

LO-9.2.1 H2 Apply pairwise testing to derive and execute test cases for an AI-based system. 

9.3 Back-to-Back Testing 

AI-9.3.1 K2 Explain how back-to-back testing is used for AI-based systems. 

9.4 A/B Testing 

AI-9.4.1 K2 Explain how A/B testing is applied to the testing of AI-based systems. 

9.5 Metamorphic Testing 

AI-9.5.1 K3 Apply metamorphic testing for the testing of AI-based systems. 

HO-9.5.1 H2 Apply metamorphic testing to derive test cases for a given scenario and execute 
them. 

9.6 Experience-Based Testing of AI-Based Systems 

AI-9.6.1 K2 Explain how experience-based testing can be applied to the testing of AI-based 
systems. 

HO-9.6.1 H2 Apply exploratory testing to an AI-based system. 

9.7 Selecting Test Techniques for AI-Based Systems 

AI-9.7.1 K4 For a given scenario, select appropriate test techniques when testing an AI-based 
system. 
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9.1 Adversarial Attacks and Data Poisoning 

9.1.1 Adversarial Attacks 
An adversarial attack is where an attacker subtly perturbs valid inputs that are passed to the trained 
model to cause it to provide incorrect predictions.  These perturbed inputs, known as adversarial 
examples, were first noticed with spam filters, which could be tricked by slightly modifying a spam 
email without losing readability.  Recently, they have become more associated with image classifiers.  
By simply changing a few pixels which are invisible to the human eye, it is possible to persuade a 
neural network to change its image classification to a very different object and with a high degree of 
confidence.   

Adversarial examples are generally transferable [B17], which means that an adversarial example 
which causes one ML system to fail will often cause another ML system to fail that is trained to 
perform the same task.  Even when the second ML system has been trained with different data and is 
based on different architectures, it is often still prone to failure with the same adversarial examples. 

White-box adversarial attacks are where the attacker knows which algorithm was used to train the 
model and also which model settings and parameters were used (there is a reasonable level of 
transparency).  The attacker uses this knowledge to generate adversarial examples by, for example, 
making small perturbations in inputs and monitoring which ones cause large changes to the model 
outputs.   

Black-box adversarial attacks involve the attacker exploring the model to determine its functionality 
and then building a duplicate model that provides similar functionality.  The attacker then uses a 
white-box approach to identify adversarial examples for this duplicate model.  As adversarial 
examples are generally transferable, the same adversarial examples will normally also work on the 
original model. 

If it is not possible to create a duplicate model, it may be possible to use high-volume automated 
testing to discover different adversarial examples and observe the results. 

Adversarial testing simply involves performing adversarial attacks with the purpose of identifying 
vulnerabilities so that preventative measures can be taken to protect against future failures.  Identified 
adversarial examples are added to the training data so that the model is trained to correctly recognize 
them. 

9.1.2  Data Poisoning 
Data poisoning attacks are where an attacker manipulates the training data to achieve one of two 
results.  The attacker may insert backdoors or neural network trojans to facilitate future intrusions, or 
more often, they will use corrupted training data (e.g., mislabeled data) to induce the trained model to 
provide incorrect predictions. 

Poisoning attacks may be targeted with the aim of causing the ML system to misclassify in specific 
situations.  They may also be indiscriminate, such as with a denial-of-service attack.  A well-known 
example of a poisoning attack was the corruption of the Microsoft Tay chatbot, whereby a relatively 
small number of harmful Twitter conversations trained the system through feedback to provide tainted 
conversations in the future.  A commonly used form of data poisoning attack uses the false reporting 
of millions of spam emails as not being spam in an attempt to skew spam filtering software.  An area 
of concern with data poisoning is the potential for public, widely used AI datasets to become 
poisoned. 



Certified Tester  
AI Testing (CT-AI) 
Syllabus  

 

v1.0 Page 68 of 100 2021-10-01 
© International Software Testing Qualifications Board 

Testing to detect data poisoning is possible using EDA, as poisoned data may show up as outliers. In 
addition, data acquisition policies can be reviewed to ensure the provenance of training data.  Where 
an operational ML system may be attacked by feeding it poisoned data, A/B testing (see Section 9.4) 
could be used to check that the updated version of the system is still closely aligned with the previous 
version.  Alternatively, regression testing of an updated system using a trusted test suite may also 
determine if a system has been poisoned. 

9.2 Pairwise Testing 
The number of parameters of interest for an AI-based system can be extremely high, especially when 
the system uses big data or interacts with the outside world, such as a self-driving car.  Exhaustive 
testing would require all possible combinations of these parameters set to all possible values to be 
tested.  However, since this would result in a practically infinite number of tests, test techniques are 
used to select a subset that can be run in the limited time available.   

Where it is possible to combine numerous parameters, each of which may have many discrete 
values, combinatorial testing can be applied to significantly reduction the number of test cases 
required, ideally without compromising the defect detection capability of the test suite.  There are 
several combinatorial testing techniques (see [I02] and [S08]). However, in practice, pairwise testing 
is the most widely used technique because it is easy to understand, has ample tool support. In 
addition, research has shown that most defects are caused by interactions involving few parameters 
[B33].  

In practice, even the use of pairwise testing can result in extensive test suites for some systems, and 
the use of automation and virtual test environments (see Section 10.2) often becomes necessary to 
allow the necessary number of tests to be run.  For example, when considering self-driving cars, high-
level test scenarios for system testing need to exercise both the different environments in which the 
cars are expected to operate and the various vehicle functions.  Thus, the parameters would need to 
include the range of environment constraints (e.g., road types and surfaces, weather and traffic 
conditions, and visibility) and the various self-driving functions (e.g., adaptive cruise control, lane 
keeping assistance, and lane change assistance).  In addition to these parameters, inputs from 
sensors could be considered at varying levels of effectiveness (e.g., inputs from a video camera will 
degrade as a journey progress and it gets dirtier).   

Research is currently unclear on the necessary level of rigor that would be required for the use of 
combinatorial testing with safety-critical AI-based systems such as self-driving cars. Even though 
pairwise testing may not be sufficient), it is known that the approach is effective at finding defects. 

9.2.1 Hands-On Exercise: Pairwise Testing 
For an implemented AI-based system with a minimum of five parameters and at least five hundred 
possible combinations, use a pairwise testing tool to identify a reduced set of pairwise combinations 
and execute tests for these combinations.  Compare the number of pairwise combinations tested with 
the number required if all theoretically possible combinations were to be tested. 

9.3 Back-to-Back Testing 
One of the potential solutions to the test oracle problem (see Section 8.7) when testing AI-based 
systems is to use back-to-back testing.  This is also known as differential testing.  With back-to-back 
testing, an alternative version of the system is used as a pseudo-oracle and its outputs compared with 
the test results produced by the SUT.  The pseudo-oracle could be an existing system, or it could be 
developed by a different team, possibly on a different platform, with a different architecture and with a 
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different programming language. When testing the functional suitability (as opposed to non-functional 
requirements), the system used as a pseudo-oracle is not constrained to achieve the same non-
functional acceptance criteria as the SUT.  For example, it may not have to execute as quickly, in 
which case it can be far less expensive to build. 

In the context of ML, it is possible to use different frameworks, algorithms and model settings to 
create an ML pseudo-oracle. In some situations, it may also be possible to create a pseudo-oracle 
using conventional, non-AI, software. 

For pseudo-oracles to be effective in detecting defects, there should be no common software in both 
the pseudo-oracle and the SUT. Otherwise, it would be possible for the same defect in both to cause 
the two test results to match when both are defective.  With so much immature, reusable, open-
source AI software being used to develop AI-based systems, re-use of code between the pseudo-
oracle and the SUT can compromise the pseudo-oracle. Poor documentation of reusable AI solutions 
may also make it difficult for the testers to recognize that this problem is occurring. 

9.4 A/B Testing 
A/B testing is a method where the response of two variants of the program (A and B) to the same 
inputs are compared with the purpose of determining which of the two variants is better.  It is a 
statistical testing approach which typically requires the comparison of test results from several test 
runs to determine the difference between the programs. 

A simple example of this method is where two promotional offers are emailed to a marketing list 
divided into two sets.  Half of the list gets offer A, half gets offer B, and the success of each offer 
helps decide which to use in the future.  Many e-commerce and web-based companies use A/B 
testing in production, diverting different consumers to different functionality, to help identify 
consumers’ preferences. 

A/B testing is one approach to solving the test oracle problem, where the existing system is used as a 
partial oracle.  A/B testing does not generate test cases and provides no guidance on how the tests 
should be designed, although operational inputs are often used in tests. 

A/B testing can be used to test updates to an AI-based system where there are agreed acceptance 
criteria, such as ML functional performance metrics, as described in Chapter 5.  Whenever the system 
is updated, A/B testing is used to check that the updated variant performs as well as, or better than 
the previous variant.  Such an approach can be used for a simple classifier, but can also be used for 
testing far more complex systems.  For example, an update to improve the effectiveness of a smart 
city transport routing system can also be tested using A/B testing (e.g., comparing average commute 
times for two variants of the system on consecutive weeks). 

A/B testing can also be used to test self-learning systems.  When the system makes a change, 
automated tests are run, and the resultant system characteristics are compared with those before the 
change was made.  If the system is improved, then the change is accepted, otherwise the system 
reverts to its previous state. 

One major difference between A/B testing and back-to-back testing relates to the use of A/B testing to 
compare two variants of the same system and the use of back-to-back testing to detect defects.  

9.5 Metamorphic Testing (MT) 
Metamorphic testing [B18] is a technique aimed at generating test cases which are based on a source 
test case that has passed.  One or more follow-up test cases are generated by changing 
(metamorphizing) the source test case based on a metamorphic relation (MR).  The MR is based on a 
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property of a required function of the test object, such that it describes how a change in a test case’s 
test inputs are reflected in the same test case’s expected results. 

For example, consider a program that determines the average of a set of numbers.  A source test 
case is generated comprising a set of numbers and an expected average, and the test case is run to 
confirm that it passes.  It is now possible to generate follow-up test cases based on what is known 
about the program’s average function.  Initially, the order of the numbers being averaged may simply 
be changed.  Given the average function, the expected result can be predicted to stay the same.  
Thus, a follow-up test case with the numbers in a different order can be generated without having to 
calculate the expected result.  With a large set of numbers, this could lead to generating a large 
number of different sets of numbers in which the same numbers are used in different sequences and 
each of them could be used to create a separate follow-up test case. All of these test cases would be 
based on the same source test case and have the same expected result.  

It is common to have MRs and follow-up test cases where the expected result is different from the 
original expected result of the source test case.  For example, using the same average function, an 
MR can be derived in which each element of the input set is multiplied by two.  The expected result 
for such a set is simply the original expected result multiplied by two.  Similarly, any other value could 
be used as a multiplier to potentially generate an infinite number of follow-up test cases based on this 
MR. 

MT can be used for most test objects and can be applied to both functional and non-functional testing 
(e.g., installability testing covers different target configurations where the installation parameters can 
be selected in different sequences).  It is particularly useful where the generation of expected results 
is problematic, due to the lack of an inexpensive test oracle.  This is the case with some AI-based 
systems that are based on the analysis of big data, or those where the testers are unclear on how the 
ML algorithm derives its predictions.  In the area of AI, MT has been used for testing image 
recognition, search engines, route optimization and voice recognition, among others.  

As explained above, MT can be based on a passed source test case, but it is also useful if it is not 
possible to verify that any source test case is correct.  This may be the case, for example, where the 
program implements a function which is too complex for a human tester to replicate and use as a test 
oracle, such as with some AI-based systems. In this situation, MT can be used to generate one or 
more test cases which, when run, will create a set of outputs where the relationships between the 
outputs can then be checked for validity.  With this form of MT, the individual tests are not known to 
be correct, but the relationships between them must hold true, so providing improved confidence in 
the program.  An example could be an AI-based actuarial program that predicts an age at death 
based on a large set of data, where it is known, for example, that if the number of cigarettes smoked 
is increased, the predicted age at death should decrease (or, at least, stay the same). 

MT is a relatively new test technique, first proposed in 1998. It differs from traditional test techniques 
in that the expected results of the follow-up test cases are not described in terms of absolute values, 
but are relative to the expected results in the source test case.  It is based on an easily understood 
concept, can be applied by testers with little experience of applying the technique but who understand 
the application domain, and has similar costs compared to traditional techniques.  It is also effective at 
revealing defects, with research showing that only three to six diverse MRs can reveal over 90% of 
the defects that could be detected using techniques based on a traditional test oracle [B19].  It is 
possible to automatically generate follow-up test cases from well-specified MRs and a source test 
case. However, commercial tools are not currently available, although Google is already applying 
automated MT to test Android graphics drivers using the GraphicsFuzz tool, which has been open 
sourced (see [R23]). 
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9.5.1 Hands-On Exercise: Metamorphic Testing 
In this exercise, students will gain practical experience of the following: 

• Deriving several metamorphic relations (MRs) for a given AI-based application or program. 
These MRs should include some where the expected results of the source and follow-up test 
cases are the same and some where they are different. 

• Generating source test cases for the AI-based application or program. These do not have to 
be guaranteed to pass, but students should be reminded of the limitations of MT where there 
no such “gold standard” is available. 

• Using the derived MRs and generated source test cases to derive follow-up test cases. 

• Running the follow-up test cases. 

9.6 Experience-Based Testing of AI-Based Systems 
Experience-based testing includes error guessing, exploratory testing, and checklist-based testing 
[I01], all of which can be applied to the testing of AI-based systems. 

Error guessing is typically based on testers knowledge, typical developer errors, and failures in similar 
systems (or previous versions).  An example of error guessing applied to AI-based systems could be 
the use of knowledge about how ML systems have in the past failed due to the use of systemically 
biased training data. 

In exploratory testing, tests are designed, generated, and executed in an iterative manner, with the 
opportunity for later tests to be derived, based on the test results of earlier tests.  Exploratory testing 
is especially useful when there are poor specifications or test oracle problems, which is often the case 
for AI-based systems. As a result, exploratory testing is often used in this context and should be used 
to supplement the more systematic testing based on techniques, such as metamorphic testing (see 
Section 9.5).   

A tour is a metaphor used for a set of strategies and goals for testers to refer to when they perform 
exploratory testing organized around a special focus [B20].  Typical tours for the exploratory testing of 
AI-based systems might focus on the concepts of bias, underfitting and overfitting in ML systems.  For 
example, a data tour might be applied to test the model. In this tour the tester could identify different 
types of data used for training, their distribution, their variations, their format and ranges, etc., and 
then use the data types to test the model. 

ML systems are highly dependent on the quality of training data, and the existing field of EDA is 
closely related to the exploratory testing approach.  EDA is where data are examined for patterns, 
relationships, trends and outliers. It involves the interactive, hypothesis-driven exploration of data and 
is described in [B21] as “We explore data with expectations.  We revise our expectations based on 
what we see in the data.  And we iterate this process.” EDA typically requires tool support in two 
areas; for interaction with the data, to allow analysts to better understand complex data, and for data 
visualization, to allow them to easily display analysis results.  The use of exploratory techniques, 
primarily driven by data visualization, can help validate the ML algorithm being used, identify changes 
that result in efficient models, and leverage domain expertise [B22]. 

Google has a set of twenty-eight ML tests written as assertions, in the areas of data, model 
development, infrastructure and monitoring, which is used as a testing checklist within Google for ML 
systems [B23].  The Google “ML test checklist” is presented here as published by Google: 

ML Data: 

1. Feature expectations are captured in a schema. 
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2. All features are beneficial. 

3. No feature’s cost is too much. 

4. Features adhere to metalevel requirements. 

5. The data pipeline has appropriate privacy controls. 

6. New features can be added quickly. 

7. All input feature code is tested. 

Model Development: 

1. Model specs are reviewed and submitted. 

2. Offline and online metrics correlate. 

3. All hyperparameters have been tuned. 

4. The impact of model staleness is known. 

5. A simpler model is not better. 

6. Model quality is sufficient on important data slices. 

7. The model is tested for considerations of inclusion. 

ML Infrastructure: 

1. Training is reproducible. 

2. Model specs are unit tested. 

3. The ML pipeline is integration tested. 

4. Model quality is validated before serving. 

5. The model is debuggable. 

6. Models are canaried before serving. 

7. Serving models can be rolled back 

Monitoring Tests: 

1. Dependency changes result in notification. 

2. Data invariants hold for inputs. 

3. Training and serving are not skewed. 

4. Models are not too stale. 

5. Models are numerically stable. 

6. Computing performance has not regressed. 

7. Prediction quality has not regressed. 

9.6.1 Hands-On Exercise: Exploratory Testing and Exploratory Data Analysis (EDA) 
For a selected model and dataset, students will perform a data tour, considering various types of data 
and their distribution for various parameters.   

Students will perform EDA on the data to identify missing data and/or potential bias in the data. 
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9.7 Selecting Test Techniques for AI-Based Systems 
An AI-based system will typically include both AI and non-AI components.  The selection of test 
techniques for testing the non-AI components is generally the same as for any conventional testing.  
For the AI-based components, the choice may be more constrained.  For example, where a test 
oracle problem is perceived (i.e., generating expected results is difficult), then, based on the 
perceived risks, it is possible to mitigate this problem by the use of the following: 

• Back-to-back testing: This requires test cases to be available or generated and an equivalent 
system to act as a pseudo-oracle, which for regression testing can be a previous version of 
the system.  For effective detection of defects, an independently developed system may be 
required. 

• A/B testing: This often uses operational inputs as test cases and is normally used to compare 
two variants of the same system using statistical analysis.  A/B testing can be used to check 
for the data poisoning of a new variant, or for automated regression testing of a self-learning 
system. 

• Metamorphic testing: This can be used by inexperienced testers to cost-effectively find 
defects although they need to understand the application domain. MT is not suitable for 
providing definitive results as the expected results are not absolute, but, instead, relative to 
the source test cases.  Commercial tool support is not currently available, but many tests can 
be generated manually. 

Adversarial testing is typically appropriate for ML models where the mishandling of adversarial 
examples could have a significant impact, or where the system may be attacked.  Similarly, testing for 
data poisoning may be appropriate for ML systems where the system may be attacked. 

Where the AI-based systems are complex and have multiple parameters, pairwise testing is often 
appropriate. 

Experience-based testing is often suitable for testing AI-based systems, especially for consideration 
of the data used for training and operational data.  EDA can be used to validate the ML algorithm 
being used, identify efficiency improvements, and leverage domain expertise. Google have found that 
their ML test checklist is an effective approach for ML systems. 

In the specific area of neural networks, coverage of the network is often suitable for mission-critical 
systems, with some coverage criteria requiring more rigorous coverage than others. 
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10 Test Environments for AI-Based Systems – 30 minutes 
Keywords 

Virtual test environment 

AI-Specific Keywords 

AI-specific processor, autonomous system, big data, explainability, multi-agent system, self-learning 
system 

Learning Objectives for Chapter 10: 

10.1 Test Environments for AI-Based Systems 

AI-10.1.1 K2 Describe the main factors that differentiate the test environments for AI-based 
systems from those required for conventional systems. 

10.2 Virtual Test Environments for Testing AI-Based Systems 

AI-10.2.1 K2 Describe the benefits provided by virtual test environments in the testing of AI-based 
systems. 
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10.1 Test Environments for AI-Based Systems 
AI-based systems can be used in a wide variety of operational environments, which means that the 
test environments are similarly diverse. Characteristics of AI-based systems that can cause the test 
environments to differ from those for conventional systems include:  

• Self-learning:  Self-learning systems, and some autonomous systems, are expected to adapt 
to changing operational environments that may not have been fully defined when the system 
was initially deployed (see Section 2.1).  As a result, defining test environments that can 
mimic these undefined environmental changes is inherently difficult and may require both 
imagination on the part of the testers and a level of randomness built into the test 
environment.   

• Autonomy: Autonomous systems are expected to respond to changes in their environment 
without human intervention, and also recognize situations where autonomy should be ceded 
back to human operators (see Section 2.2).  For some systems, identifying and then 
mimicking the circumstances for ceding autonomy may require the test environments to push 
the systems to extremes.  For some autonomous systems, their purpose is to work in 
environments that are hazardous, and setting up representative, hazardous test environments 
can be challenging. 

• Multi-agency: Where multi-agent AI-based systems are expected to work in concert with other 
AI-based systems, the test environment may need to incorporate a level of non-determinism 
so that it can mimic the non-determinism of the AI-based systems with which the SUT 
interacts.  

• Explainability: The nature of some AI-based systems can make it difficult to determine how 
the system made its decisions (see Section 2.7).  Where this is important to understand prior 
to deployment, the test environment may need to incorporate tools as a means of explaining 
how decisions are made. 

• Hardware: Some of the hardware used to host AI-based systems is specifically designed for 
this purpose, such as AI-specific processors (see Section 1.6).  The need to include such 
hardware in the test environment should be considered as part of the relevant test planning. 

• Big data: Where an AI-based system is expected to consume big data (e.g., high-volume, 
high-velocity and/or high-variety data), then setting this up as part of a test environment 
needs careful planning and implementation (see Section 7.3). 

10.2 Virtual Test Environments for Testing AI-Based Systems 
The use of a virtual test environment when testing an AI-based system brings the following benefits: 

• Dangerous scenarios: These can be tested without endangering the SUT, other interacting 
systems, including humans, or the operational environment (e.g., trees, buildings). 

• Unusual scenarios: These can be tested when it would otherwise be very time consuming or 
expensive to set up these scenarios for real operations (e.g., waiting for a rare event, such as 
a full solar eclipse or four buses entering the same road intersection simultaneously).  
Similarly, edge cases, which are difficult to create in the real world, can be created more 
easily, repeatedly and reproducibly in a virtual test environment. 

• Extreme scenarios: These can be tested when it would be expensive or impossible to set 
these up in reality (e.g., for a nuclear disaster or deep space exploration).   
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• Time-intensive scenarios: These can be tested in reduced timescales (e.g., several times per 
second) in a virtual environment. In contrast, these might take hours or days to set up and run 
in real time.  A further advantage is that multiple virtual test environments can be run in 
parallel. This typically takes place in the cloud and allows many scenarios to be run 
concurrently, which may not be possible using actual system hardware. 

• Observability and controllability: Virtual test environments provide far greater controllability of 
the test environment. For example, they can ensure that an unusual set of financial trading 
conditions is replicated. In addition, they give far better observability, as all digitally provided 
parts of the environment can be continuously monitored and recorded. 

• Availability: The simulation of hardware by virtual test environments allows systems to be 
tested with (simulated) hardware components that may otherwise not be available, perhaps 
because they have not been developed yet or are too expensive. 

Virtual test environments may be built specifically for a given system, may be generic, or may be 
developed to support specific application domains.  Both commercially and open-source virtual test 
environments are available to support the testing of AI-based systems.  Examples include: 

• Morse: The Modular Open Robots Simulation Engine, is a simulator for generic mobile robot 
simulation of single or multi robots, based on the Blender game engine [R24].  

• AI Habitat: This is a simulation platform created by Facebook AI, designed to train embodied 
agents (such as virtual robots) in photo-realistic 3D environments [R25].  

• DRIVE Constellation: This is an open and scalable platform for self-driving cars from NVIDIA. 
It is based on a cloud-based platform and is capable of generating billions of miles of 
autonomous vehicle testing [R26]. 

• MATLAB and Simulink: These provide the ability to prepare training data, produce ML models 
and simulate the execution of AI-based systems including the models using synthetic data 
[R27]. 
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11 Using AI for Testing – 195 minutes 
Keywords 

Visual testing 

AI-Specific Keywords 

Bayesian techniques, classification, clustering algorithm, defect prediction, graphical user interface 
(GUI) 

Learning Objectives for Chapter 11: 

11.1 AI Technologies for Testing 

AI-11.1.1 K2 Categorize the AI technologies used in software testing. 

HO-11.1.1 H2 Discuss, using examples, those activities in testing where AI is less likely to be used. 

11.2 Using AI to Analyze Reported Defects 

AI-11.2.1 K2 Explain how AI can assist in supporting the analysis of new defects. 

11.3 Using AI for Test Case Generation 

AI-11.3.1 K2 Explain how AI can assist in test case generation. 

11.4 Using AI for the Optimization of Regression Test Suites 

AI-11.4.1 K2 Explain how AI can assist in optimization of regression test suites 

11.5 Using AI for Defect Prediction 

AI-11.5.1 K2 Explain how AI can assist in defect prediction. 

HO-11.5.1 H2 Implement a simple AI-based defect prediction system. 

11.6 Using AI for Testing User Interfaces 

AI-11.6.1 K2 Explain the use of AI in testing user interfaces 
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11.1 AI Technologies for Testing 
Several AI technologies are listed in Section1.4, all of which can be used to support some specific 
aspect of software testing.  According to Harman [B24], the software engineering community uses 
three broad areas of AI technologies: 

• Fuzzy logic and probabilistic methods: These involve the use of AI techniques to handle real 
world problems which are themselves probabilistic.  For example, AI can be used to analyze 
and predict possible system failures using Bayesian techniques. These may estimate the 
likelihood of components or functions failing, or reflect the potentially random nature of human 
interactions with the system. 

• Classification, learning and prediction: This can be used for various use cases such as 
predicting costs as part of project planning or of predicting defects. As embodied by ML, this 
area is used for many software testing tasks, including defect management (see Section 
11.2), defect prediction (see Section 11.5), and user interface testing (see Section 11.6). 

• Computational search and optimization techniques: These can be used to solve optimization 
problems using a computational search of potentially large and complex search spaces (e.g., 
using search algorithms).  Examples include generating test cases (see Section 11.3), 
identifying the smallest number of test cases that achieves a given coverage criterion, and 
optimizing regression test cases (see Section 11.4). 

The above categorization is necessarily broad, as there is considerable overlap between the testing 
tasks that can be implemented by AI and the different AI technologies.  It is also just one 
categorization, and others could be created that may be equally valid. 

11.1.1 Hands-On Exercise: The Use of AI in Testing 
As part of a discussion, students will identify testing activities and tasks that are currently impractical 
for implementation as AI.  These could include: 

• specifying test oracles. 

• communicating with stakeholders to clarify ambiguities and retrieve missing information. 

• suggesting improvements to the user experience. 

• challenging stakeholder assumptions and asking uncomfortable questions. 

• understanding user needs. 

A distinction should be drawn between weak AI, which could be used for some limited tasks, and 
general AI, which is currently not available (see Section 1.2). 

 

11.2 Using AI to Analyze Reported Defects 
Reported defects are usually categorized, prioritized, and any duplicates identified.  This activity is 
often referred to as defect triage or analysis and is intended to optimize the elapsed time spent in 
defect resolution.  AI can be used to support this activity in various ways, such as: 

• Categorization: NLP [B25] can be used to analyze text within defect reports and extract 
topics, such as the area of affected functionality, that can then be provided alongside other 
meta data to clustering algorithms, such as k-nearest neighbors or support vector machines.  
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These algorithms can identify suitable defect categories and highlight similar or duplicate 
defects.  AI-based categorization is particularly useful for automated defect reporting systems 
(e.g., for Microsoft Windows and for Firefox) and on large projects with many software 
engineers. 

• Criticality: ML models trained on the features of the most critical defects can be used to 
identify those defects most likely to cause those system failures that account for a large 
percentage of reported defects [B26]. 

• Assignment: ML models can suggest which developers are best suited to fix particular 
defects, based on the defect content and previous developer assignments. 

11.3 Using AI for Test Case Generation 
The use of AI to generate tests can be a very effective technique for quickly create testing assets and 
maximizing coverage (e.g., code or requirements coverage).  The basis for generating these tests 
includes the source code, the user interface, and a machine-readable test model.  Some tools also 
base tests on the observation of the low-level behavior of the system through instrumentation or 
through log files [B27]. 

However, unless a test model that defines required behaviors is used as the basis of the tests, this 
form of test generation generally suffers from a test oracle problem because the AI-based tool does 
not know what the expected results should be for a given set of test data.  One solution is to use 
back-to-back testing if a suitable system is available to use as a pseudo-oracle (see Section 9.3).  
Alternatively, tests could be run with the expected result that neither an “application not responding” 
nor a system crash occurred, or other similar simple failure indicators. 

Research comparing AI-based test generation tools with similar non-AI fuzz testing tools shows that 
the AI-based tools can achieve equivalent levels of coverage and find more defects while reducing the 
average sequence of steps needed to cause a failure from an average of around 15,000 steps to 
around 100 steps. This makes debugging far easier [B27]. 

11.4 Using AI for the Optimization of Regression Test Suites 
As changes are made to a system, new tests are created, executed and become candidates for a 
regression test suite.  To prevent regression test suites from growing too large, they should be 
frequently optimized to select, prioritize and even augment test cases to create a more effective and 
efficient regression test suite.   

An AI-based tool can perform optimization of the regression test suite by analyzing, for example, the 
information from previous test results, associated defects, and the latest changes that have been 
made, such as features which are broken more frequently and which tests exercise code impacted by 
recent changes. 

Research shows that reductions of 50% in the size of a regression test suite can be achieved while 
still detecting most defects [B28], and reductions of 40% in the test execution duration can be reached 
without significant reduction in fault detection for continuous integration testing [B29]. 

11.5 Using AI for Defect Prediction 
Defect prediction can be used to predict whether a defect is present, how many defects are present, 
or whether defects can be found. This capability depends on the sophistication of the tool used.  
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Results are normally used to prioritize the testing (e.g., more tests for those components where more 
defects are predicted). 

Defect prediction is typically based on source code metrics, process metrics and/or people and 
organizational metrics.  Due to there being so many potential factors to consider, determining the 
relationship between these factors and the likelihood of defects is beyond human capabilities. As a 
result, using an AI-based approach which typically uses ML is a necessity.  Defect prediction is most 
effective when based on prior experiences in a similar situation (e.g., with the same code base and/or 
the same developers). 

Defect prediction using ML has been successfully used in several different situations (e.g., [B30] and 
[B31]).  The best predictors have been found to be people and organizational measures rather than 
the more widely used source code metrics, such as lines of code and cyclomatic complexity [B32]. 

11.5.1 Hands-On Exercise: Build a Defect Prediction System 
Students will use a suitable dataset (e.g., including source code measures and corresponding defect 
data) to build a simple defect prediction model and use it to predict the likelihood of defects using 
source code measures from similar code. 

The model should use at least four features from the dataset, and the class should explore the results 
using several different features to highlight how the results change based on the selected features. 

11.6 Using AI for Testing User Interfaces 

11.6.1 Using AI to Test Through the Graphical User Interface (GUI) 
Testing through the GUI is the typical approach for manual testing (other than for component testing) 
and is often the starting point for test automation initiatives. The resultant tests emulate human 
interaction with the test object.  This scripted test automation can be implemented by applying a 
capture/playback approach, using either the actual coordinates of the user interface elements, or the 
software-defined objects/widgets of the interface.  However, this approach suffers several drawbacks 
with object identification, including sensitivity to interface changes, code changes, and platform 
changes. 

AI can be used to reduce the brittleness of this approach, by employing AI-based tools to identify the 
correct objects using various criteria (e.g., XPath, label, id, class, X/Y coordinates), and to choose the 
historically most stable identification criteria.  For example, the ID of a button in a particular area of 
the application may change with each release, and so the AI-based tool may assign a lower 
importance to this ID over time and place more reliance on other criteria. This approach classifies the 
objects in the user interface as matching the test, or not matching the test. 

Alternatively, visual testing uses image recognition to interact with GUI objects through the same 
interface as an actual user, and therefore does not need to access the underlying code and interface 
definitions.  This makes it completely non-intrusive and independent of the underlying technology. The 
scripts need only work through the visible user interface.  This approach allows the tester to create 
scripts that interact directly with the images, buttons and text fields on the screen in the same way as 
a human user, without being affected by the overall screen layout.  The use of image recognition in 
test automation can become restricted by the computing resources needed.  However, the availability 
of affordable AI that supports sophisticated image recognition now makes this approach possible for 
mainstream use. 
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11.6.2 Using AI to Test the GUI 
ML models can be used to determine the acceptability of user interface screens (e.g., by using 
heuristics and supervised learning).  Tools based on these models can identify incorrectly rendered 
elements, determine whether some objects are inaccessible or hard to detect, and detect various 
other issues with the visual appearance of the GUI. 

While image recognition is one form of computer vision algorithm, other forms of AI-based computer 
vision can be used to compare images (e.g., screenshots) to identify unintended changes to the 
layout, the size, position, color, font or other visible attributes of objects.  The results of these 
comparisons can be used to support regression testing to check that changes to the test object have 
not adversely affected the user interface. 

The technology for checking the acceptability of screens can be combined with comparison tools to 
create more sophisticated AI-based regression testing tools that are capable of advising whether 
detected user interface changes are likely to be acceptable to users, or whether these changes 
should be flagged for checking by a human.  Such AI-based tools can also be used to support testing 
for compatibility on different browsers, devices or platforms aimed at checking that the user interface 
for the same application works correctly on various browsers/devices/platforms. 
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13 Appendix A – Abbreviations 
Abbreviation Description 

AI Artificial intelligence 

AIaaS AI as a service 

API Application programming interface 

AUC Area under curve  

DL Deep learning 

DNN Deep neural network 

EDA Exploratory data analysis 

EU European Union  

FN False negative 

FP False positive 

GDPR General data protection regulation 

GPU Graphical processing unit 

GUI Graphical user interface 

LIME Local interpretable model-agonistic explanations 

MC/DC Modified condition decision coverage 

ML Machine learning 

MR Metamorphic relation 

MSE Mean square error 

MT Metamorphic testing 

NLP Natural language processing 

ROC Receiver operating characteristic 

SUT System under test 

SVM Support vector machine 

TN True negative 

TP True positive 

XAI Explainable AI 
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14 Appendix B – AI Specific and other Terms 

Term Name  Definition 

accuracy 
The ML functional performance metric used to evaluate a classifier, 
which measures the proportion of predictions that were correct  
(After ISO/IEC TR 29119-11)	

activation function The formula associated with a neuron in a neural network that 
determines the output of the neuron from the inputs to the neuron 

activation value The output of an activation function of a neuron in a neural network 

adversarial attack The deliberate use of adversarial examples to cause an ML model to 
fail 

AI as a Service (AIaaS) A software licensing and delivery model in which AI and AI 
development services are centrally hosted 

AI component A component that provides AI functionality 

AI effect The situation when a previously labelled AI system is no longer 
considered to be AI as technology advances (ISO/IEC TR 29119-11)	

AI-based system A system that integrates one or more AI components 

AI-specific processor A type of specialized hardware designed to accelerate AI applications 

algorithmic bias A type of bias caused by the ML algorithm 

annotation The activity of identifying objects in images with bounding boxes to 
provide labelled data for classification 

area under curve (AUC) A measure of how well a classifier can distinguish between two 
classes. 

artificial intelligence (AI) The capability of an engineered system to acquire, process, create 
and apply knowledge and skills (ISO/IEC TR 29119-11) 

association An unsupervised learning technique that identifies relationships and 
dependencies between samples 

augmentation The activity of creating new data points based on an existing dataset 

automation bias 

 

A type of bias caused by a person favoring the recommendations of an 
automated decision-making system over other sources 
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Term Name  Definition 

Synonym: complacency bias 

autonomous system A system capable of working without human intervention for sustained 
periods 

autonomy The ability of a system to work for sustained periods without human 
intervention (ISO/IEC TR 29119-11)	

Bayesian model A statistical model that uses probability to represent the uncertainty of 
both model inputs and outputs 

Bayesian technique A technique that considers before and after probability distributions as 
parameters of a statistical model 

bias The systematic difference in treatment of certain objects, people or 
groups in comparison to others (ISO/IEC DIS 22989) 

big data 
Extensive datasets whose characteristics in terms of volume, variety, 
velocity and/or variability require specialized technologies and 
techniques to process 

case-based reasoning The technique of solving a new problem based on the solutions of 
similar past problems 

chatbot An application used to conduct a conversation via text or text-to-
speech 

classification A type of ML function that predicts the output class for a given input 
(After ISO/IEC TR 29119-11) 

classifier 
An ML model used for classification 

Synonym: classification model 

clustering A type of ML function that groups similar data points together 

clustering algorithm A type of ML algorithm used to group similar objects into clusters 

concept drift 
A change in the perceived accuracy of an ML model predictions over 
time caused by changes in user expectations, behavior and the 
operational environment. 

confusion matrix A technique for summarizing the ML functional performance of a 
classification algorithm 
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Term Name  Definition 

data acquisition The activity of acquiring data relevant to the business problem to be 
solved by an ML model 

data labelling The activity of adding meaningful tags to objects in raw data to support 
classification in ML 

data pipeline The implementation of data preparation activities to provide input data 
to support training by an ML algorithm or prediction by an ML model 

data point A set of one or more measurements comprising a single observation 
used as part of a dataset 

data poisoning The deliberate and malicious manipulation of training or input data to 
an ML model 

data preparation The activities of data acquisition, data pre-processing and feature 
engineering in the ML workflow 

data pre-processing The activities of data cleaning, data transformation, data 
augmentation, and data sampling in the ML workflow 

data visualization A technique for graphically representing data relationships, trends and 
patterns 

dataset A collection of data used for training, evaluation, testing and prediction 
in ML 

decision threshold 

A value that transforms the result of a prediction function into a binary 
outcome of either above or below the value  

Synonym: discrimination threshold 

decision tree A tree-like ML model whose nodes represent decisions, and whose 
branches represent possible outcomes 

deductive classifier A classifier based on the application of inference and logic to input 
data 

deep learning (DL)  ML using neural networks with multiple layers 

deep neural network 
A neural network comprised of several layers of neurons 

Synonym: multi-layer perceptron 
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Term Name  Definition 

defect prediction A technique to predict the areas within the test object in which defects 
will occur or the quantity of defects that are present 

deterministic system   A system which will produce the same set of outputs and final state 
from a given set of inputs and starting state 

edge computing The part of a distributed architecture in which information processing is 
performed close to where that information is used. 

epoch An iteration of ML training on the whole training dataset 

evolution The process of continuous change from a lower, simpler, or worse 
state to a higher, more complex, or better state 

expert system 
An AI-based system for solving problems in a particular domain or 
application area by drawing inferences from a knowledge base 
developed from human expertise 

explainability The level of understanding how the AI-based system came up with a 
given result (ISO/IEC TR 29119-11) 

explainable AI (XAI) The field of study related to understanding the factors that influence AI 
system outputs 

exploratory data analysis 
(EDA) 

The interactive, hypothesis-driven and visual exploration of data used 
to support feature engineering 

F1-Score An ML functional performance metric used to evaluate a classifier 
which provides a balance between recall and precision 

false negative (FN) An ML model prediction in which the model mistakenly predicts the 
negative class 

false positive (FP) An ML model prediction in which the model mistakenly predicts the 
positive class 

feature An individual measurable attribute of the input data used for training by 
an ML algorithm and for prediction by an ML model 

feature engineering 
The activity in which those attributes in the raw data that best 
represent the underlying relationships that should appear in the ML 
model are identified for use in the training data (ISO/IEC TR 29119-11) 

flexibility The ability of a system to work in contexts outside its initial 
specification (After ISO/IEC TR 29119-11) 
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Term Name  Definition 

fuzzy logic A type of logic based on the concept of partial truth represented by 
certainty factors between 0 and 1 

general AI 

AI that exhibits intelligent behaviour comparable to a human across the 
full range of cognitive abilities (ISO/IEC TR 29119-11) 

Synonym: strong AI	

General Data Protection 
Regulation (GDPR) 

The European Union (EU) regulation on data protection and privacy 
that applies to the data of citizens of the EU and the European 
Economic Area 

graphical processing unit 
(GPU) 

An application-specific integrated circuit designed to manipulate and 
alter memory to accelerate the creation of images in a frame buffer 
intended for output to a display device 

ground truth The information provided by direct observation and measurement that 
is known to be real or true  

hyperparameter A parameter used to either control the training of an ML model or to 
set the configuration of an ML model 

hyperparameter tuning The activity of determining the optimal hyperparameters based on 
particular goals  

inappropriate bias A type of bias that causes a system to produce results that lead to 
adverse effects for a particular group 

intelligent agent An autonomous program which directs its activity towards achieving 
goals using observations and actions 

inter-cluster metric A metric that measures the similarity of data points in different clusters 

interpretability The level of understanding how the underlying AI technology works 
(ISO/IEC TR 29119-11) 

intra-cluster metric A metric that measures the similarity of data points within a cluster 

k-nearest neighbor 
An approach to classification that estimates the likelihood of group 
membership for a data point dependent on the group membership of 
the data points nearest to it 

learning algorithm A program that produces an ML model based on the properties of the 
training dataset 
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Term Name  Definition 

LIME method The Local Interpretable Model-Agnostic Explanations program for 
explaining the predictions from an ML model 

linear regression 
A statistical technique that models the relationship between variables 
by fitting a linear equation to the observed data when the target 
variable is numeric 

logistic regression A statistical technique that models the relationship between variables 
when the target variable is categorical rather than numeric 

machine learning (ML) The process using computational techniques to enable systems to 
learn from data or experience (ISO/IEC TR 29119-11) 

mean square error (MSE) The statistical measure of the average squared difference between the 
estimated values and the actual value 

ML algorithm An algorithm used to create an ML model from a training dataset 

ML benchmark suite A dataset used to compare ML models and ML algorithms over a 
range of evaluation metrics 

ML framework A tool or library that supports the creation of an ML model 

ML function Functionality implemented by an ML model, such as classification, 
regression or clustering 

ML model evaluation The process of comparing achieved ML functional performance 
metrics with required criteria and those of other ML models 

ML model training   The process of applying the ML algorithm to the training dataset to 
create an ML model 

ML model tuning The process of testing hyperparameters to achieve optimum 
performance 

ML system A system that integrates one or more ML models 

ML workflow A sequence of activities used to manage the development and 
deployment of an ML model 

multi-agent system A system that comprises multiple intelligent agents 

narrow AI AI focused on a single well-defined task to address a specific problem 
(ISO/IEC TR 29119-11) 
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Term Name  Definition 

Synonym: weak AI 

natural language 
processing (NLP) 

A field of computing that provides the ability to read, understand, and 
derive meaning from natural languages 

neural network 

A network of primitive processing elements connected by weighted 
links with adjustable weights, in which each element produces a value 
by applying a nonlinear function to its input values, and transmits it to 
other elements or presents it as an output value (ISO/IEC 2382) 

Synonym: artificial neural network 

neural network trojan A vulnerability injected into a neural network using a data poisoning 
attack with the intent of exploiting it later 

neuromorphic processor An integrated circuit designed to mimic the biological neurons of the 
human brain 

neuron A node in a neural network, usually receiving multiple input values and 
generating an activation value 

noise A distortion or corruption in data 

non-deterministic system A system which will not always produce the same set of outputs and 
final state given a particular set of inputs and starting state 

outlier An observation that lies outside the overall pattern of the data 
distribution 

overfitting   
The generation of an ML model that corresponds too closely to the 
training dataset, resulting in a model that finds it difficult to generalize 
to new data (After ISO/IEC TR 29119-11) 

perceptron A neural network with just one layer and one neuron 

precision 
An ML functional performance metric used to evaluate a classifier, 
which measures the proportion of predicted positives that were correct 
(After ISO/IEC TR 29119-11) 

pre-trained model An ML model already trained when it was obtained 

probabilistic system   A system whose behavior is described in terms of probabilities; hence 
its outputs cannot be perfectly predicted 
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Term Name  Definition 

procedural reasoning AI technology used for constructing real-time reasoning systems that 
can perform complex tasks in dynamic environments 

random forest 

Ensemble ML technology for classification, regression and other tasks 
that operate by constructing and running many decision trees and then 
either outputting the mode of the class or the mean prediction of the 
individual trees 

reasoning technique AI that generates conclusions from available information using logical 
techniques (After ISO/IEC TR 29119-11) 

recall 

 

An ML functional performance metric used to evaluate a classifier, 
which measures the proportion of actual positives that were predicted 
correctly (After ISO/IEC TR 29119-11) 

Synonym: sensitivity  

receiver operating 
characteristic (ROC) curve 

A graphical plot that illustrates the ability of a binary classifier as its 
discrimination threshold is varied 

regression A type of ML function that results in a numerical or continuous output 
value for a given input (After ISO/IEC TR 29119-11) 

regression model An ML model whose expected output for a given numeric input is a 
continuous variable (After ISO/IEC DIS 23053) 

reinforcement learning   The activity of building an ML model using a process of trial and 
reward to achieve an objective (After ISO/IEC TR 29119-11) 

reward function A function that defines the success of reinforcement learning 

reward hacking 
The activity performed by an intelligent agent to maximize its reward 
function to the detriment of meeting the original objective (After 
ISO/IEC TR 29119-11) 

R-squared 

A statistical measure of how close the data points are to the fitted 
regression line.  

Synonym:  coefficient of determination 

rule engine A set of rules that determine which actions should occur when certain 
conditions are satisfied 
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Term Name  Definition 

safety 
The expectation that a system does not, under defined conditions, lead 
to a state in which human life, health, property, or the environment is 
endangered (ISO/IEC/IEEE 12207) 

sample bias A type of bias where the dataset is not fully representative of the data 
space to which ML is applied 

search algorithm 
An algorithm that systematically visits a subset of all possible states or 
structures until the goal state or structure is reached (After ISO/IEC TR 
29119-11) 

self-learning system An adaptive system that changes its behavior based on learning 
through trial and error (After ISO/IEC TR 29119-11) 

silhouette coefficient 

 

A clustering measure between -1 and +1 based on the average inter-
cluster and intra-cluster differences 

Synonym: silhouette score 

super AI An artificial intelligence-based system that far exceeds human 
capabilities 

supervised learning  Training an ML model from input data and its corresponding labels 

support vector machine 
(SVM) 

An ML technique in which the data points are viewed as vectors in 
multi-dimensional space separated by a hyperplane 

technological singularity A point in the future when technological advances are no longer 
controllable by people (After ISO/IEC TR 29119-11) 

test oracle problem The challenge of determining whether a test has passed or failed for a 
given set of test inputs and state 

training dataset A dataset used to train an ML model 

transfer learning A technique for modifying a pre-trained ML model to perform a 
different related task   

transparency The level of visibility of the algorithm and data used by the AI-based 
system (After ISO/IEC TR 29119-11) 

true negative (TN) A prediction in which the model correctly predicts the negative class 

true positive (TP) A prediction in which the model correctly predicts the positive class 
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Term Name  Definition 

underfitting   
The generation of an ML model that does not reflect the underlying 
trend of the training dataset, resulting in a model that finds it difficult to 
make accurate predictions (ISO/IEC TR 29119-11) 

unsupervised learning Training an ML model from input data using an unlabeled dataset 

validation dataset A dataset used to evaluate a trained ML model with the purpose of 
tuning the model 

von Neumann architecture A computer architecture which consists of five main components: 
memory, a central processing unit, a control unit, input and output 

weight 
An internal variable of a connection between neurons in a neural 
network that affects how it computes its outputs and that changes as 
the neural network is trained 
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A/B testing  73, 74, 77 

acceptance testing  56 

adaptability  22, 23, 24, 54, 55, 58 

adversarial attack  20, 37, 71 

adversarial example  37, 71, 77 

API testing  55 

attacker  20, 41, 71 

automation bias  57 

availability  18, 57, 81 

back-to-back testing  68, 73, 74, 77, 84 

bias  24, 26, 40, 50, 64 

black-box testing  66 

checklist-based testing  75 

classification  29, 33, 44, 45 

clustering  29, 33, 45, 47 

combinatorial testing  72 

compatibility  68 

complexity  27, 66 

component  55, 56, 59 

component integration testing  55 

component testing  55 

confirmation testing  65 

continuous testing  63 

coverage  55, 78, 83, 84 

data poisoning  71, 77 

data privacy  41 

debugging  84 

decision tree  16, 31 

denial-of-service  71 

dynamic testing  55, 66 

effectiveness  20, 24, 72, 73 

efficiency  24, 78 

encryption  56 

error guessing  75 

experience-based testing  34, 75, 78 

explainability  22, 26, 27, 45, 56, 57, 66, 67, 
69, 80 

exploratory testing  66, 75, 76 

flexibility  23 

follow-up test case  74, 75 

functional correctness  58 

functional suitability  68 

fuzz testing  84 

graphical user interface  82, 85, 86 

input data testing  55 

installability  74 

integration testing  55, 58 

interpretability  26, 67 

machine learning  46, 57 

maintainability  68 

metamorphic relation  74, 75 

metamorphic testing  74, 75 

ML algorithms  29 

ML functional performance criteria  55, 56, 
58, 59, 60 

ML functional performance metrics  18, 30, 
31, 43, 45, 46, 57, 69, 73 

ML model  17, 18, 19, 30, 33, 37, 39, 41, 46 

ML model testing  29, 55, 56 

ML workflow  30, 33, 37, 39 

neural network  49, 50, 51, 71 

neuron coverage  51 

non-functional requirement  56, 58, 68, 73 

non-functional test  31, 74 

operational environment  24, 56, 58, 63, 64, 
68, 80 
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pairwise testing  72, 78 

performance efficiency  57, 68 

poisoning attack  71 

portability  57, 68 

pseudo-oracle  73, 77, 84 

quality characteristics  22, 34, 45 

regression  45, 47 

regression testing  65, 84 

reinforcement learning  29, 30, 33 

reliability  68 

reward hacking  22, 24, 25 

scalable  17, 38, 81 

security  18, 26, 40, 41, 57, 68 

security vulnerabilities  41 

sign-change coverage  51 

sign-sign coverage  51 

simulator  56, 81 

source test case  74, 75, 77 

supervised learning  29, 33, 41, 42, 46, 49 

system testing  56, 72 

system under test  56, 73, 80 

test automation  85, 86 

test data  56 

test dataset  31, 34, 39, 57 

test design  63, 75 

test environment  56, 64, 72, 79, 80 

test level  54, 56 

test model  84 

test oracle  22, 54, 66, 67, 68, 73, 74, 75, 
83, 84 

test planning  80 

test run  73 

test suite  72, 84 

test technique  68, 72, 75, 77, 87 

testability  54, 66 

threshold coverage  51 

tour  75, 77 

training dataset  31, 34, 39 

transparency  26 

transparency  66 

unsupervised learning  29, 33 

usability  68 

user experience  83 

user interface  54, 55, 83, 84, 85, 86 

validation  39, 57, 76, 78 

validation dataset  31, 39 

value-change coverage  51 

virtual test environment  80, 81 

visual testing  85 

white-box testing  51, 58, 66 

 


